
1.
2.
3.
4.

Use Case 1 Code Analysis with C or Cpp
Code Analysis with C/C++

The static analysis of C/C++ is a bit different from the analysis of other programming languages because the preprocessor complicates the analysis
process a little bit. Resolving header files and macros, used in the preprocessing phase, is essential for a complete and correct C/C++ static code analysis.
Let’s break down step by step how to analyze a C application with .Kiuwan Code Security

(Please note: some screenshots may be outdated)

Analyzing in the cloud

We use the Linux FTP server (linux-ftpd-0.17) as our sample application. The source code was downloaded from https://launchpad.net/ubuntu/utopic
./+source/linux-ftpd

Analyzing the code with Kiuwan Code Security is easy:

Create an application.
Upload the source code:
Start the analysis,
View the results:

We found to analyze in the uploaded ZIP file, but . Why this difference? Let’s look at the logs window (open the pop-up 15 files only 12 were analyzed
menu to the right of ‘new analysis’ button) to see the cause:

Please note that these instructions may be outdated!

https://www.kiuwan.com/code-security-sast/
https://launchpad.net/ubuntu/utopic/+source/linux-ftpd
https://launchpad.net/ubuntu/utopic/+source/linux-ftpd
https://www.kiuwan.com/wp-content/uploads/oldblog/2015/03/02a.png

There are . Place the cursor over each row and the tooltip will display the parser error.three unparsed files

Normally, these errors are due to badly constructed files (they do not compile) or a specific statement that is not supported by our analyzers.

But when we analyze C or C ++, we must that we have and before ensure fully declared macros directories where header files could be found
declaring that these files are wrong.

Analyzing locally

This extra configuration cannot be done when analyzing in the cloud, so you , which you can download from the have to use the Kiuwan Local Analyzer
new analysis screen:

Or from your management drop-down menu:

Once the local analysis is complete, you can check the temp folder under Kiuwan Local Analyzer . You can find a new directory for installation directory
this analysis. In our case: %KiuwanLocalAnalyzer%\temp\linux-ftpd.82232984

https://www.kiuwan.com/wp-content/uploads/oldblog/2015/03/03a.png
https://www.kiuwan.com/wp-content/uploads/2017/05/2019-11-08_10-06-17.png
https://www.kiuwan.com/wp-content/uploads/2017/05/Downlad-KLA.png

1.

2.

Here are the (certainly not very user friendly) that help us to find the causes of parsing errors. log files

The file has the list of that were not found during the analysis. These files are not mandatory for a successful .unresolved.headers.log header files
analysis, but they that are subsequently used.can help you to know where you have declared some macros

Our first parsing error.

Cannot parse C:_dev\c\linux-ftpd-0.17\ftpd\extern.h, due to: Parse error at line 38, column 1. Encountered: void
line[38]: void blkfree __P((char **));

This error is due to the macro __P, which was not found during the analysis. This symbol is known as a parameter wrapper. It is a kind of macro, often
used in sources that are with pre-ANSI compilers to protect parameter declarations in function prototypes.meant to be compatible

This macro, in our system, is located in file, and is defined as:/usr/include/x86_64-linux-gnu/sys/cdefs.h

#define __P(args) args

The file was one of the listed in the log file .sys/cdefs.h c.unresolved.headers.log

To solve this problem, we can edit the configuration for this application. On Kiuwan Local Analyzer’s ‘Analyze screen’, click on :Configuration

We have 2 options:

Edit the ‘Header directories’ entry, where you can set a comma-separated directories list (absolute or relative to source directories), which
includes files that could be found. This is a good option if you are analyzing in the where the code is compiled and you have same machine
access to all source code dependencies.
Go to the , and click on . On the new screen, you can define this new macro:‘Macro definition section’ Edit

https://www.kiuwan.com/wp-content/uploads/oldblog/2015/03/05a.png
https://www.kiuwan.com/wp-content/uploads/oldblog/2015/03/06a.png

In both cases, this configuration is saved for subsequent analyses, so the configuration is a ‘one-time’ action.

Let’s go to the second error.

Once one error is fixed, we need to , since . In the new log file, after the second analyze it again some errors are hidden or caused by another one
analysis, we get:

Cannot parse C:_dev\c\linux-ftpd-0.17\ftpd\ftpd.c, due to: Parse error at line 1644, column 1. Encountered: reply
line[1644]: reply(int n, char *fmt, va_dcl va_alist)

Seeing the code, around line 1644, we find:

#ifdef __STDC__
reply(int n, const char *fmt, …)
#else
reply(int n, char *fmt, va_dcl va_alist)
#endif

Our analyzer does not support the LEGACY mode to handle variable argument lists used in .va_dcl va_alist

To skip this definition, we can , as seen before, and ask KIUWAN to process the preprocessor conditional define the macro , with value 1__STDC__
directives.

https://www.kiuwan.com/wp-content/uploads/oldblog/2015/03/07a.png

1.
2.

After this last change all files were processed, so we have finished our work.

Conclusion

In short, when we have problems in our C analysis:

Analyze locally: Local Kiuwan Analyzer
Resolve parsing errors whose origin is due to configuration problems:

Review unresolved.headers.log
Include Header directories
Define macros
Whether we need to process conditional directives

https://www.kiuwan.com/wp-content/uploads/oldblog/2015/03/08a.png

	Use Case 1 Code Analysis with C or Cpp

