
A Security Guide for 

Developers



I
N
D
E
X

Overview...................................................................1

COBOL Legacy Language.........................................2

COBOL and Software Security...................................3

SQL Injections..........................................................3

Insufficient Input Validation......................................4

Non-Critical Code Smells..........................................5

Insufficient Security Validation Controls...................6

Security Vulnerabilities Due to Defective Code..........6

The Cost of Not Securing COBOL Applications..........7

Securing COBOL Data Security and Preventing 
Breaches..................................................................8



1

For the past several decades, businesses and governmental 
agencies have been using the COBOL programming language for 
numerous applications. Despite its age, COBOL remains popular 
and widespread across industries such as banking, finance, and 
commerce. This is in part due to COBOL’s highly user-friendly 
design and imperative orientation. Today, COBOL is commonly 
used in the development of applications for mainframe computing operations, particularly for operations 
such as batch processing and transaction processing that are commonly used in businesses across the 
world. 

However, though COBOL offers businesses and governmental agencies many upsides in terms of ease of 
use and convenience, it also has a few drawbacks of which users need to be aware. In particular, COBOL 
programming languages often come with potential security vulnerabilities that may compromise critical 
data contained within a COBOL application. These vulnerabilities are particularly concerning given the 
areas where COBOL is most common. For example, banks and other financial institutions that use 
COBOL language applications may risk exposing the financial and personal data of customers to hackers 
if COBOL security risks are ignored. Many of these COBOL vulnerabilities can result in significant data 
breaches that compromise customer or user data, and cost companies millions of dollars in lost income 
and resource expenditures. 

Of course, with a programming language as convenient and engrained as COBOL is, developers and IT 
professionals cannot expect it to go away any time soon. Therefore, DevSecOps professionals, 
cybersecurity experts, and other IT managers need to understand the most common security risks 
associated with COBOL programming languages. With a firm understanding of these risks, IT 
professionals who work with COBOL systems can beef up their data security and reduce the risks of 
critical data breaches. A cybersecurity partner like Kiuwan can also provide comprehensive security 
solutions for professionals working with COBOL systems. In this guide, we walk you through just that. 

Kiuwan | Security Guide for COBOL Developers

Over v ie w

https://www.microfocus.com/en-us/what-is/cobol


2Kiuwan | Security Guide for COBOL Developers

The Common Business-Oriented Language, commonly 
known as COBOL, is one of the oldest extant programming 
languages that sees widespread use today. COBOL’s origins 
go back to the 1950s when it was developed as part of the 
Conference/Committee on Data Systems Languages 
(CODASYL) as an offshoot of the earlier FLOW-MATIC 
programming language developed by Grace Hopper. COBOL’s 
development came in conjunction with the United States 
Department of Defense, which sought to create a more 
portable programming language that could be used for easy 
and user-friendly data processing.

The COBOL Legacy Language

Based on its origins at the intersection of business and government, 
it should come as no surprise that COBOL’s continued popularity today comes mainly from the 
corporate and governmental sectors. Since COBOL’s initial design centered on easy data processing for 
user-friendly applications, businesses across several industries were able to quickly implement COBOL 
languages into their own transaction processing needs. 

Over time, these programs became ingrained in the digital sediment used by many companies and 
governmental agencies, even as newer programming languages arrived in the subsequent decades. 
Today, many businesses and government agencies prefer to maintain COBOL applications that still 
sufficiently serve their needs, rather than expend the time and resources needed to upgrade to a new 
programming language. Given its age and the fact that it still sees widespread use, COBOL is commonly 
referred to as a legacy language.

One area where COBOL stands out among other programming languages is the fact that its development 
and standardization arose from the spheres of business and government. COBOL’s initial development in 
the 1950s came about in part because computer scientists at the time were more concerned with 
academic issues in mathematics and the physical sciences, and were not dedicating sufficient energy to 
the development of programming languages that could meet the data processing needs of businesses 
and governments.

https://americanhistory.si.edu/cobol/introduction
https://www.microfocus.com/documentation/visual-cobol/vc50/VS2019/GUID-80CEAC03-B36E-4AF5-93DD-99D0DE492740.html


3Kiuwan | Security Guide for COBOL Developers

The lack of input from computer scientists in COBOL’s 
development has both upsides and downsides. On the 
one hand, the fact that it was designed by business 
professionals and government employees means that it 
is much more user-friendly for IT professionals in these 
areas than many programming languages designed by 
computer scientists. However, the drawback of this is 
that COBOL may be more vulnerable to certain security 
risks than more computer science-oriented languages. 

Another related issue is that fewer and fewer new programmers and computer scientists have specific 
training with COBOL, given its age and lack of status within the computer science world. This can mean 
that businesses and agencies that still rely on COBOL applications may have a hard time finding IT 
professionals with the specific COBOL expertise needed to mitigate COBOL’s security risks. Still, as a 
legacy language ubiquitous in business and government, COBOL will likely remain in use for the 
foreseeable future. Therefore, professionals working with COBOL systems should be proactive in 
understanding the security risks they are most likely to face, and how to stop them before they happen.

SQL Injections

One of the most common security vulnerabilities found in COBOL applications is the 
risk of SQL injections. SQL injections are a particular type of data attack that takes 
advantage of weaknesses in an application’s Structure Query Language (SQL). When 
an SQL injection occurs, an attacker will access the application via the client end. 
Once attackers can access the application, they will insert malicious SQL code into 
the application’s entry field for further execution. The insertion of malicious SQL 
code can allow an attacker to access data contained within the program itself. 

If an SQL attack is successful, attackers can access, change, or destroy any data within the applications. 
For example, a hacker who uses an SQL injection attack can change financial information within a bank’s 
COBOL application on financial transactions. An attacker can also mimic the identity of authorized users 
in the system to access or change critical data on the system’s end. In some cases, an attacker can use 
an SQL injection on a COBOL system to gain authorization as a system administrator. This can allow them 
to lock out other users, change security settings, steal data, or otherwise alter the application’s main 
functions.

For an SQL injection to be successful, an application must have a preexisting security vulnerability for 
the attacker to exploit. This is because SQL injection attacks require exploitable security flaws. These 
include failures to prevent weak-type input and insufficient filters for SQL statements inputted into the 
system. For this reason, COBOL systems are particularly vulnerable to SQL injection attacks. 

COBOL and Software Security

https://blog.secureflag.com/2022/03/09/why-you-should-take-security-in-cobol-software-seriously/
https://blog.secureflag.com/2022/03/09/why-you-should-take-security-in-cobol-software-seriously/
https://owasp.org/www-community/attacks/SQL_Injection
https://www.w3schools.com/sql/sql_injection.asp


4Kiuwan | Security Guide for COBOL Developers

COBOL systems usually use frequent SQL statements for the data that is inputted and outputted within the 
system.

However, COBOL languages often do not have sufficient parameters for their systems’ SQL input. In these 
instances, the program requires more user input to build functional statements for essential system 
operations. Though this is a source of the very user-friendly status that makes COBOL so popular in 
business and government, it also means that a COBOL application’s SQL statements often lack sufficient 
parameters. Attackers can exploit this vulnerability to inject malicious SQL code into the application and 
cause a significant data breach or security issue. 

Fortunately, SQL injections are also one of the easier security risks 
to mitigate, even with an older legacy language like COBOL. IT 
professionals working with a COBOL system should be proactive 
in making sure that their applications have appropriate parameters. 
In these cases, the input would be based on the parameters, rather 
than user input. This would go a long way in preventing opportunities 
for malicious actors to induce SQL injections into the system. Firewalls, 
though unable to fully prevent SQL injection attacks, can make the 
process of injecting malicious SQL code much more difficult, and 
potentially discourage any would-be attacker. 

Insufficient Input Validation
Another major security vulnerability in COBOL systems is the potential for a lack of 
sufficient input validation controls on the user end of COBOL applications. Though 
all sorts of programming languages can experience insufficient input validation 
controls, COBOL systems may be particularly vulnerable to this due to a combination 
of the language’s age, its high degree of user input, and its origins and development 
outside of the sphere of computer science.

All web and mobile applications that involve user input must have sufficient controls to sanitize the data 
that gets entered into the system. Without proper input validations in place, COBOL applications can be 
vulnerable to a wide range of different types of attacks and security breacInsufficientcient input 
validation in COBOL systems can be a significant cause of the aforementioned SQL injection attacks. 
Additionally, insufficient input validation controls can cause a COBOL system to experience other types 
of attacks, such as cross-site scripting and code injection. When these occur, attackers can access 
critical data within the system, abuse authentication controls, and shut out other users from the 
application.

The good news here is that these types of vulnerabilities are relatively easy to fix in COBOL sysOnet. One 
of the main reasons why COBOL systems may lack sufficient input validation controls is simply because 
of the lack of new IT professionals with specific training in the COBOL programming language. Companies, 
government offices, and other organizations that still rely on COBOL applications can go a long way in 
securing this particular vulnerability with a bit of proactive education in input validation control 
programming in COBOL systems. With users more aware of what validations need to be in place for all...

https://portswigger.net/web-security/sql-injection
https://www.invicti.com/blog/web-security/input-validation-errors-root-of-all-evil/
https://www.invicti.com/blog/web-security/input-validation-errors-root-of-all-evil/
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html


5Kiuwan | Security Guide for COBOL Developers

data within the system, and with IT professionals more aware of protocols for programming input 
validations within COBOL systems, these applications can easily become much more secure from input 
validation attacks.

Non-Critical Code Smells
In the world of computer programming, code smells are a more generalized issue 
that nonetheless may point to an underlying vulnerability in a code. In essence, a 
code smell is a symptom of a deeper issue within the coding itself, one that may not 
be a critical flaw in and of itself but may point to a deeper bug or issue within the 
code.

Code smells that are non-critical may, in a certain sense, be more pernicious than critical code smells that 
induce system failures. If a code smell causes a continuous annoyance but does not rise to the level of 
significant system failure, users and administrators may be more likely to ignore the underlying issues and 
let the problem fester. But this means that the system will remain vulnerable to whatever bug or error is 
causing the smell, and data within the system may be at a higher risk of being exposed in an attack or 
security breach. 

Common code smells that may affect COBOL systems are:

Duplicate Code
Duplicate codes often occur when bits of code are copied and pasted multiple times into one 
application. When similar or identical lines of code exist in more than one location in a program, 
the program’s operations may fail to function properly, and essential security protocols may fail 
to prevent malicious attacks from outside the system.

Bloaters
Bloaters happen when certain methods or classes of code in a particular program get bloated 
beyond their normal capacity. This tends to occur when a line of code is not properly designated 
within an application and ends up doing too many things at once, or operating without a clear 
function. Bloaters can cause the entire application to suffer delays and system errors. These, in 
turn, can hinder an application’s security controls and make it more vulnerable to attacks and 
data breaches. 

Lazy Classes
Lazy classes of code are codes that do not have a particular function within the current system’s 
operations. Oftentimes, these classes of code were designed in anticipation of future features 
that don’t yet exist within the current system. Since they do not serve a clear purpose within the 
operation as it exists now, these lazy classes often end up slowing down the program as a whole 
and making the operations much harder to work with on the user end. Lazy classes can also 
result in security vulnerabilities by compromising things like input validations and code 
parameters. 

https://www.codegrip.tech/productivity/everything-you-need-to-know-about-code-smells/
https://www.bitegarden.com/what-is-code-smell-and-common-mistakes#:~:text=What's%20a%20code%20smell%3F,prevent%20the%20program%20from%20functioning


6

Though non-critical code smells can affect all sorts of programming languages, COBOL programs tend to 
be particularly vulnerable to them. This is another consequence of COBOL’s origins outside of the realm 
of computer science, where coding precision is a greater emphasis during the process of programming 
language design. In general, though, these issues can be more easily solved with some simple proactive 
measures for all users. When a company or agency uses COBOL systems, it’s important for all users to 
recognize the signs of code smells and what kinds of coding issues they may point to. It’s also important 
for IT professionals working with these systems to respond to all code smells, even though they are not 
critical, as a way to prevent future security vulnerabilities.

Insufficient Security Validation Controls

Similar to the issue with insufficient input validation, insufficient security validation 
controls stem from broader failures in COBOL system administrators and users to 
maintain sufficient security protocols in the system validation process. Users who 
access data within a COBOL application should have specific authentication in place. 
However, this means that the application’s security validation controls need to be 
sufficient for authenticating all authorized users who access the system’s data. 
Without sufficient security validation controls, attackers can more easily bypass the 
system’s security protocols and access critical data within the system itself. 

COBOL applications can be particularly vulnerable to a few specific types of security validation control 
issues. For example, many COBOL systems may suffer from issues with duplicate validation forms. These 
occur when multiple validation forms within the system’s security validation have the same names. If this 
happens, the system will usually choose one validation form arbitrarily, and discard the other. This can 
result in issues with users accessing the system, or failures in the system responding to requests for data 
or other operations. It can also result in attackers exploiting duplicate validation forms to access critical 
data or shut down the system entirely.

Another security validation control issue that may occur in COBOL systems is erroneous validation 
methods. When these kinds of issues occur, normal user validation may be hindered or compromised 
entirely, as users fail to gain access to the application through the normal validation process. The main risk 
of this type of issue is that the system administrators will disable the COBOL system’s security validation 
procedures entirely rather than fix the underlying issues with the security validation controls. This would 
obviously leave the system much more vulnerable to outside attacks and data breaches.

Security Vulnerabilities Due to Defective Code

One of the consequences of a long-standing legacy programming language like 
COBOL is that it has accumulated a degree of defective code over the decades in 
which it has been in use. Despite COBOL’s resiliency and user-friendly orientation, 
COBOL systems still may contain defective code that leaves them vulnerable to 
broader security risks or data breaches.

Kiuwan | Security Guide for COBOL Developers

https://www.techtarget.com/searchsoftwarequality/tip/Understanding-code-smells-and-how-refactoring-can-help
http://projects.webappsec.org/w/page/13246943/Insufficient%20Process%20Validation
http://projects.webappsec.org/w/page/13246943/Insufficient%20Process%20Validation
https://owasp.org/www-community/vulnerabilities/Improper_Data_Validation
https://owasp.org/www-community/vulnerabilities/Improper_Data_Validation


7Kiuwan | Security Guide for COBOL Developers

Today, researchers estimate that there are about 220 billion lines of COBOL code across the public and 
private sectors. Most experts estimate that somewhere between 0.5% and 0.7% of this code is defective 
in some way. While this may not sound like a lot, it would still represent millions of lines of defective code 
embedded in critical programs in banks, software companies, and governmental agencies. If each line of 
defective code represents one potential security vulnerability, users may experience around 27.5 million 
such vulnerabilities across 220 billion lines of COBOL code.

Of course, all programming languages have some degree of defective code. But COBOL stands out 
somewhat in the field of programming languages for its legacy status and its embedment within various 
businesses. When working with COBOL applications, IT professionals can mitigate the security 
vulnerabilities brought on by these tens of millions of lines of potentially defective code by investing in 
data-centric security protocols. Kiuwan’s appsec solutions are a great resource for implementing the 
necessary security protocols into legacy languages like COBOL. Data-centric security solutions can 
separate data security from vulnerable software, and minimize the risk of security vulnerabilities 
resulting from defective COBOL code.

The Cost of Not Securing COBOL 
Applications
COBOL’s ubiquity across important industries such as banking, as 
well as its role in governance, means that COBOL-related security 
breaches can be particularly harmful. In particular, COBOL’s 
widespread use in the U.S. government can lead to important data 
being exposed. Recent oversight has found that security breaches 
in U.S. government COBOL systems have risen by more than 1,000% 
between 2006 and 2014. In 2015, the U.S. government’s Office of 
Personnel Management experienced a major security breach in its 
COBOL systems that exposed the data of around 18 million 
government employees. 

These types of attacks against legacy language systems like COBOL can end up costing significant 
amounts of money. In 2016 alone, the U.S. government spent around 75% of its $80 billion IT budget 
responding to security vulnerabilities in its extant legacy language systems, including many that use 
COBOL. 

Despite these frustrations, the fact remains that most of these security vulnerabilities in COBOL can be 
easily mitigated with simple proactive implementations of security protocols, as well as a bit of 
education among all system users. Small upfront investments in modernized COBOL security solutions 
can save government agencies and private companies millions of dollars that they would otherwise lose 
in costly data breaches. Given the general lack of contemporary IT training in COBOL systems, user 
education in appropriate COBOL security protocols is another great way for companies, governmental 
agencies, and other organizations to work together to make their data and software much more secure. 

https://techbeacon.com/security/why-data-centric-security-essential-legacy-cobol-systems
https://www.kiuwan.com/
https://www.csoonline.com/article/3182067/article.html
https://www.csoonline.com/article/3182067/article.html
https://blog.microfocus.com/federal-breaches-and-cobol-the-opm-hack-explained/


8

Though COBOL remains vulnerable to these and other types of security risks and data breaches, its 
status as a legacy language means that it will remain a critical part of the digital infrastructure of both 
businesses and governments. Fortunately, the convenient nature of COBOL programming means that 
COBOL security solutions can be quite convenient as well. Kiuwan’s cybersecurity solutions offer an 
excellent path forward for all IT professionals—in both the public and private spheres—to secure their 
COBOL applications and prevent costly data breaches.

Kiuwan offers exceptional SAST and SCA solutions, as well as user-friendly system add-ons that can 
mitigate the types of security risks that COBOL systems may be vulnerable to. So, if you are an IT 
professional working with a legacy language like COBOL, get in touch with Kiuwan today to connect with 
our team of cybersecurity experts. You can also request a demo of Kiuwan’s security solutions, start a 
free trial, or read our blog for more helpful information. 

Kiuwan | Security Guide for COBOL Developers

GET IN TOUCH:

Headquarters
2950 N Loop Freeway W, Ste 700 

Houston, TX 77092, USA

United States +1 732 895 9870 

Asia-Pacific, Europe, Middle East and 

Africa +44 1628 684407

contact@kiuwan.com

Partnerships: partners@kiuwan.com

YOU KNOW CODE, WE KNOW SECURITY!

Securing COBOL Data 
and Preventing Breaches

https://www.securecodewarrior.com/article/from-cobol-to-go-why-we-must-support-legacy-security-training-and-beyond
https://www.kiuwan.com/contact/

