
A Security Guide for

Developers

I
N
D
E
X

Overview...1

SAP’s Security Recommendations............................2

Injections Flaws...3

Cross-Site Scripting...5

Broken Authentication and Session
Management..6

Insufficient Authorization and Access
Control.. 8

Security Misconfiguration and Misuse
of Mechanisms...9

Reliable Security Capabilities..................................10

1

ABAP (Advanced Business Application Programming), the high-level programming language created by
software company SAP SE, is used for developing applications for the SAP R/3 platform. While certainly
not as ubiquitous in B2B and enterprise applications as, say, Java and Python, being designed
specifically for the SAP environment means that its market share is directly tied to that of the German
software company.

Some sources say that ABAP/SAP is used by over 31,000 companies in their database, accounting for
0.79% of market share. The largest segments for ABAP/SAP use are Information Technology and
Services and Computer Software, followed by, perhaps less predictably but also understandably, Food
and Beverage, Oil and Energy, and Retail. SAP clients using ABAP are primarily located in the United
States, followed by India and Germany. Other sources list companies such as Walmart and Ace Hardware
as active users of ABAP/SAP.

This information paints a picture of a highly corporate, high-level programming language dedicated to
SAP applications, which means that unsecured, recklessly developed ABAP code is rife with potential
attack vectors to systems that hold valuable, confidential, and highly sensitive data. And data breaches
are costly. The average cost of a data breach in the U.S. is $9.44 million, and the worldwide average is
$4.35 million.

The top security vulnerabilities highlighted in this guide, while not comprehensive, should effectively
inform organizations regarding security approaches for developing in the ABAP/SAP language.
Understanding the issues underlying these common vulnerabilities will help you understand what
measures can be put into place to protect your SAP applications, what preemptive steps can be taken to
avoid the issues in the first place, and what principles and concepts may have some implications beyond
the issues outlined here:

• SAP’s Security Recommendations
• Top 5 Security Risks:

• ABAP Risk– Injection Flaws
• ABAP Risk– Cross-Site Scripting
• ABAP Risk– Broken Authentication and Session Management
• ABAP Risk– Insufficient Authorization and Access Control
• ABAP Risk– Security Misconfiguration and Misuse of Mechanisms

• Reliable Security Capabilities

Kiuwan | Security Guide for ABAP/SAP Developers

Over v ie w

https://enlyft.com/tech/products/abap
https://discovery.hgdata.com/product/abap
https://www.ibm.com/reports/data-breach

2Kiuwan | Security Guide for ABAP/SAP Developers

In 2017, SAP published “Security Recommendations: A Practical Guide
for Securing SAP Solutions.” The report goes through most of the
important security-relevant topics impacted by the company’s
recommendations, categorized into five key areas:

• Security compliance - Covers security governance, audits,
cloud security, and emergency concept

• Secure operation - Spans users and authorizations,
authentication and single sign-on, support security, and
security review and monitoring

• Secure setup - Covers secure configuration, communication
security, and data security

• Secure code - Spans security maintenance of code and
customer code security

• Secure infrastructure - Involves network security, operating
system and database security, and front-end security

SAP’s Security Recommendations

All of these key areas and their subcategories are undoubtedly important points of focus when
developing in ABAP/SAP, and it is highly recommended that your CI/CD pipeline takes into account the 16
specific topics covered by these five key areas.

The same report also outlines known issues you will commonly encounter when trying to implement
SAP’s recommendations:

• Poorly established patch processes
• Unencrypted communications between SAP solutions
• Inadequately secured interfaces
• Lack of established data backup processes and emergency processes
• Incorrect or missing security system configurations

The 16 topics and the five known issues are an excellent start to securing your ABAP/SAP code and can
drastically reduce the chances of you ever needing to fix problems that arise from the top security risks
discussed below.

Additionally, you would also want to pay attention to the topics discussed by SAP’s security experts in
the community blog. Among them are personal recommendations on ABAP/SAP development security,
some inspiration from the software development market at large and how key industry learnings apply
to ABAP/SAP developers, and using SAP’s own tools to complement your CI/CD pipeline measures.

https://assets.cdn.sap.com/sapcom/docs/2017/03/14cf06b2-af7c-0010-82c7-eda71af511fa.pdf
https://assets.cdn.sap.com/sapcom/docs/2017/03/14cf06b2-af7c-0010-82c7-eda71af511fa.pdf
https://blogs.sap.com/2010/05/28/abap-development-standards-concerning-security/
https://blogs.sap.com/2022/07/05/abap-and-security-its-all-about-authorizations-isnt-it/
https://blogs.sap.com/2022/07/05/abap-and-security-its-all-about-authorizations-isnt-it/
https://blogs.sap.com/2021/12/14/using-sap-code-vulnerability-analyzer-to-avoid-vulnerabilities-in-an-abap-ci-cd-pipeline/

3Kiuwan | Security Guide for ABAP/SAP Developers

The top security risks discussed below are injection flaws,
cross-site scripting, broken authentication and session
management, insufficient authorization and access control, and
security misconfigurations and standard mechanism misuse.

Notice that these security risks and vulnerabilities are very
similar to those you might find in other programming languages,
arguably highlighting a common theme that human error — or
at least persistent human negligence — is the ultimate software
development security risk. Still, there are distinct factors unique
only to ABAP/SAP that you need to be aware of, even if you’re
familiar with the top security risks in general.

Top 5 Security Risks When Developing
in ABAP/SAP

String literals create arrays of static storage during compile time. They contain both a specific character
sequence and a null character for termination. Most string literals get referred to by a pointer to
characters or an array. Best practices call for only assigning string literals to pointers or arrays made up
of const char or const wchart_t.

Developers modifying any part of a string literal results in undefined behavior. For that reason,
programmers should avoid assigning string literals to a pointer to a type that is not a const or casting
string literals to types that are not a const. Any values returned from the following functions should be
treated as a string literal, if their first argument consists of a string literal.

1. Injection Flaws
Injection flaws are a type of security weakness that can occur when untrusted
data is used to unexpectedly alter the execution of an ABAP program.
Injection flaws can allow an attacker to execute unauthorized ABAP code,
access or modify sensitive data, or interfere with the normal operation of an
SAP system.

ABAP code is susceptible to SQL injection, remote function call (RFC) injection,
and table buffer overflow vulnerabilities.

4Kiuwan | Security Guide for ABAP/SAP Developers

SQL Injection
SQL injection is a type of code injection attack that can be used to compromise the security of an SAP
system. This attack occurs when user-supplied input, such as via an HTTP request or web form, is used
to construct and execute SQL statements without proper encoding or validation. This can allow an
attacker to execute unauthorized SQL code, access sensitive data, or interfere with the normal operation
of an SAP system.

For example, consider the following ABAP code:

If user input is not properly validated, it may be possible for an atacker to enter malicious input that
causes the above code to execute unintended actions. For instance, if an attacker entered the following
values for [input_name] and [input_password]:

‘ OR 1=1--’ (without quotation marks)

The resulting SQL query would be:

This query would return all rows from the users table because it evaluates to true regardless of what
value is supplied for [input_password]. An attacker could then use this information to gain unauthorized
access to sensitive data or systems.

RFC Injection
RFCs are a type of SAP protocol that allows communication between different SAP systems or between
SAP and non-SAP systems. An attacker can exploit an RFC injection vulnerability to execute
unauthorized ABAP code, access or modify sensitive data, or interfere with the normal operation of an
SAP system. This attack occurs when user-supplied input, such as via an HTTP request or web form, is
used to construct and execute RFC calls without proper encoding or validation. For example, let’s say
there is an ABAP program that makes an RFC call to retrieve customer information from a remote
system.

https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-US/abensql_injections_scrty.htm

5Kiuwan | Security Guide for ABAP/SAP Developers

An attacker could modify the input data for the RFC call in order to inject malicious ABAP code into the
program. When the program executes this malicious code, it could allow the attacker to gain
unauthorized access to sensitive data or systems, or interfere with the normal operation of the SAP
system.

Table Buffer Overflow
A table buffer overflow vulnerability can occur when too much data is inserted into an ABAP program’s
internal table. This can cause the ABAP program to crash or allow an attacker to execute unauthorized
code. Table buffer overflow vulnerabilities are typically caused by coding errors, such as improper input
validation.

For example, if an ABAP program does not properly validate the length of user-supplied input before
inserting it into a table, a malicious user could supply excessive data that would cause the program to
crash or allow the execution of unauthorized code.

It’s important to check if input values will fit into the allocated space for fields in tables.

2. Cross-Site Scripting (XSS)
A malicious user can inject code into an ABAP web application that will be
executed by other users who visit the site. When malicious code is executed by
victims who visit the web page, it can result in the theft of sensitive information
such as cookies or session tokens. XSS attacks can also be used to infect
victims with malware or to hijack their sessions, allowing the attacker to take
over their account and access sensitive data.

Script Injection
One example of malicious XSS code is script injection. This involves injecting a script tag into the web
page that will be executed by the victim’s browser. The script can perform any action that the attacker
desires, such as stealing cookies or session tokens, redirecting the user to another page, or infecting
the user with malware. Cookiejacking and clickjacking are common script injections. The former steals
browser cookies to access sensitive info or hijack sessions, while the latter places an invisible frame
over a button or link on a web page and intercepts clicks intended for that button or link. The attacker
can then use those clicks to perform any desired action, such as redirecting the user to another page or
downloading malware onto their machine.

Event Handler Hijacking
Event handler hijacking is another common form of XSS. This involves putting malicious code in an event
handler, such as onclick or onmouseover. When the user activates the event (by clicking or mousing
over), the malicious code is executed.

https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-us/abenxss_scrty.htm

6

Attack Vectors and Best Practices
There are two main ways that XSS attackers can insert their malicious code into ABAP/SAP applications:

1. Through user input fields: Attacker-controlled input fields such as search bars, comments
sections, and contact forms are often used to inject malicious JavaScript code. When this
code is executed by users who visit the page, it can allow the attacker to steal sensitive
information or infect the victim’s machine with malware.

2. By exploiting vulnerabilities in application logic: Some ABAP/SAP applications contain
vulnerabilities that can be exploited by attackers to inject malicious code into web pages.
For example, an attacker may exploit a security flaw in an application’s file upload feature
to upload a malicious JavaScript file that is then executed by users who visit the page
containing the uploaded file.

There are a few best practices that ABAP/SAP developers can follow to help prevent XSS attacks:

Validate and sanitize all input data before processing it. This includes using proper input
validation checks on web forms, browser cookies, and URL parameters.

Encode all output data before displaying it on a web page. This prevents malicious code
from being executed by the victim’s browser.

Use a secure development methodology such as the SAP Secure Software Development
Lifecycle (SSDL).

The good news is that these best practices also help mitigate risks arising from other vulnerabilities,
especially similarly patterned ones such as SQL injections.

3. Broken Authentication and Session Management
Poorly implemented authentication and session management mechanisms in
ABAP applications can enable attackers to gain access to resources or data
they should not have access to. When ABAP/SAP development uses weak or
easily guessed authentication credentials, it increases the risk of unauthorized
access. Additionally, if session management is not properly implemented,
attackers may be able to hijack user sessions and gain access to sensitive data.

Kiuwan | Security Guide for ABAP/SAP Developers

https://www.sap.com/documents/2016/03/a248a699-627c-0010-82c7-eda71af511fa.html
https://www.sap.com/documents/2016/03/a248a699-627c-0010-82c7-eda71af511fa.html

7Kiuwan | Security Guide for ABAP/SAP Developers

Weak Authentication Credentials
Attackers can exploit weak authentication credentials in ABAP/SAP code by guessing or brute-forcing
passwords, using default passwords, or exploiting vulnerabilities in how the authentication process is
implemented.

Attackers can try to guess or brute force passwords in order
to gain access to ABAP/SAP systems, often by using common
password lists or default passwords, or by trying variations of
an organization’s name or other easily guessed strings.
Additionally, many ABAP/SAP systems come with default
accounts that have well-known passwords. Attackers can
exploit these accounts to gain access to the system if they are
not disabled or changed.

This is one of the most well-known and easily rectified issues
not only in software development, but also in cybersecurity
in general. Still, you would be surprised how many even in the
software industry neglect the most basic of fundamentals.
Usually, developers use placeholder credentials initially,
meaning to replace them with proper ones down the line. But
often, “down the line” never comes, and the placeholders are
left holding that place — until disaster strikes.

Malicious agents can also exploit vulnerabilities in how authentication is implemented in order to gain
access without needing valid credentials. For example, an attacker may be able to bypass the login page
altogether and directly send requests that would normally require authentication, usually if the login
page did not function correctly or was hosted on a server that was configured to allow unauthenticated
access.

Poor Session Management
Session management vulnerabilities can be exploited in several ways, including:

• Guessing or brute forcing session IDs - If session IDs are weak or predictable, attackers
can try to guess or brute force them to gain access to user sessions.

• Using cookies without proper security safeguards (e.g., not setting the secure flag) -
Cookies are often used to store session information. However, if they are not properly
secured (e.g., by setting the secure flag), they can be intercepted and exploited by
attackers.

• Session ID poisoning (i.e., injecting malicious content into a user’s session) - This attack
involves injecting malicious content into a user’s session, which can then be executed
when the user accesses it. This can lead to data leakage or system compromise.

• Cross-site request forgery attacks - Similar to but not the same as XSS, cross-site forgery
attacks exploit vulnerabilities in web applications that allow an attacker to inject
illegitimate requests that are executed by the target user without their knowledge or
consent. This can be used, for example, to hijack a user’s session or perform unauthorized
actions on behalf of the victim.

8Kiuwan | Security Guide for ABAP/SAP Developers

4. Insufficient Authorization and Access Control
Lack of proper authorization checks within ABAP code can allow unauthorized
users access to sensitive functionality or data. There are two primary ways for
attackers to take advantage of poor authorization checks on SAP applications:
gaining valid credentials, or exploiting flaws in ABAP code that allow
unauthorized access to data or functionality. Ultimately, the results are the
same: data leakage, corruption, and disruptions in service.

Putting Effective Authorization Checks in Place
Setting up proper authorization checks is a significant barrier that prevents SAP applications from being
exposed to security risks. Some principles to adopt include:

• Always be certain to program the proper authorization checks and complete their
execution.

• When calling a transaction, always check the transaction start authorization.
• In RFC-capable function models, always check business authorizations.
• Always secure critical PAI (Process After Input) events triggered by directly inputting

function codes — this is extra sneaky as the corresponding interface element may be
deactivated during the PBO (PROCESS BEFORE OUTPUT) event.

• Always double-check whether you’re using the right authorization object.
• Do not use a proprietary authorization check.
• Always handle the return values of checks.

Due Diligence Is the Key Preventative Measure
In terms of weak authentication credentials, poor session
management, ineffective authorization checks, and insufficient
access control measures, there’s certainly much to be said
regarding due diligence.

Your organization needs to standardize an approach to CI/CD security for ABAP/SAP applications.
Naturally, compliance with any external regulatory bodies is included, as are any company-wide
guidelines. Your security approach also needs to be compliant and compatible with the requirements and
recommendations of SAP itself. Finally, it must be cascaded throughout your organization, with cogent
buy-in from all C-suite leaders, middle managers, and dev team leaders, to the point that it’s embedded
into your development culture as much as it’s required in your CI/CD processes.

The human element in application security is not only significant, but it’s also critical.

9Kiuwan | Security Guide for ABAP/SAP Developers

5. Security Misconfigurations and Misuse of Mechanisms
Incorrectly configured security settings in the SAP R/3 system can leave it open
to attack. To mitigate the risk of security misconfigurations, developers need
to follow best practices for configuring SAP systems and application
components. These best practices include keeping system passwords
confidential, using strong encryption for data storage and communication,
properly securing web services interactions, and limiting access privileges to
only those users who absolutely require it.

A lot of security misconfigurations open up your SAP applications to the risks enumerated above. An
administrator leaving the password in its default state, for example, is poor access control. Couple that
with ineffective authorization checks, and that clears the way for an intentional malicious agent to
compromise your application and data security. Another fundamental but often neglected security
configuration is not properly securing web services, which leaves otherwise confidential information
readily accessible.

Additionally, SAP offers mechanisms to protect against attacks:
client separation, logging, and authorization management.
However, misconfiguring or misusing these mechanisms also
inadvertently abuses the trust that companies put into them — you
might have a false sense of security, thinking that they’re available
when in fact they’re misconfigured or used incorrectly.

Common security issues arise when developers bypass client
separation, most commonly to access data in other clients or fix
an issue that spans multiple clients (performance testing and
debugging). This should only be done when completely necessary,
and code that bypasses client separation should be reviewed by a
senior developer or security expert before it is deployed to
production.

There are also known issues that can be caused by database logging being deactivated. This is generally
done when performance needs to be improved or if space in the log file is limited. Deactivating logging
can make it difficult to troubleshoot problems that occur after the changes are made, so it should only
be done when necessary. In a similar vein, vulnerabilities arise when custom programs alter business
data in SAP applications without creating change documents. ABAP provides standard update functions
that allow programs to change business data while also creating appropriate change documents, but if a
program directly accesses database tables on its own, no change documents are created automatically.

These examples above are dangerous because they invalidate what would otherwise be comprehensive
security measures. A dev team would likely assume their measures are in place, properly configured, and
used correctly.

10

If you’re looking to ramp up the security around your ABAP/SAP applications, this guide is only a starting
point. Adopting best practices and staying current on security vulnerabilities related to ABAP/SAP are
important, but partnering with a code security solution like Kiuwan can take your application
development security to the next level.

Kiuwan’s static application security testing (SAST) tool — Kiuwan Code Security — is compliant with
popular standards like OWASP and Common Weakness Enumeration (CWE). Plus, our software
composition analysis tool — Kiuwan Insights Open Source — can help reduce risk from third-party
components, address vulnerabilities, and ensure license compliance throughout your software
development life cycle.

ABAP/SAP applications are just one of the many languages we secure at Kiuwan. In addition to covering
ABAP, we provide code security for over 30 coding languages in all. Want to see how it works? Schedule a
demo with us today.

Kiuwan | Security Guide for ABAP/SAP Developers

GET IN TOUCH:

Headquarters
2950 N Loop Freeway W, Ste 700

Houston, TX 77092, USA

United States +1 732 895 9870

Asia-Pacific, Europe, Middle East and

Africa +44 1628 684407

contact@kiuwan.com

Partnerships: partners@kiuwan.com

YOU KNOW CODE, WE KNOW SECURITY!

Reliable Security
Capabilities for Your
ABAP/SAP Applications

https://www.kiuwan.com/free-demo/
https://www.kiuwan.com/free-demo/

