
Rule Development Manual
Contents

Introduction
API alternatives

Abstract Syntax Tree (low-level and high-level) API
NavigableNode / TreeNode API
XPath rules
Query API
Additional static analysis facilities

Control-flow graph (CFG) and data-flow analysis
Library metadata
Tainting propagation
Local / Global Symbol Table

Global Symbol Table (GST)
Local Symbol Table (LST)

Introduction

This guide explains the rule development facilities in Kiuwan.

Kiuwan engine is the static analysis platform embedded in Kiuwan products. With it, it is possible to
perform many different types of static analysis on source code:

Verification of compliance with coding standards: are standards been followed in the software
implementation?
Inefficiencies in code (examples: string concatenation, improper use of synchronization,
unnecessary object construction...).
Security checks (like tainting propagation, to see if a user-controller input can reach a "sink", a
resource like a database, without proper validation).
Dependency analysis, to detect design smells (god class, implementation dependency, low
cohesion and high coupling), or architecture violations (a layer is using another layer, and
should not).
Code metrics evaluation. A code metric on a software artifact represents a certain property (like
size or coupling) of the analyzed software.

Each check is coded in a unit, called Kiuwan RULE, comprising of:

Check code (a Java class),
A rule definition (XML file) including configuration and documentation.

The contains:rule definition XML descriptor

An identifier,
An implementation classname,
Technologies that analyze,
Message/description,
Priority (1=critical ... 5=informative),
Configuration properties,
Examples for a bad / repair code,
Benefits and incovenients for adopting the rule, etc.

Rules are aggregated in rulesets (parts of the quality model), used during static analysis.

When a flaw (non-compliant code) is detected in a certain source file, a violation is emitted and added to
the analysis report. Metric rules create a metric value for a certain software artifact instead.

The guide exposes the different alternatives the rule programmer has when developing rules for
automated static analysis verifications, and how to extend the Kiuwan engine platform for more advanced
usages.

Prerequisites: Kiuwan is developed in Java, so good skills on Java programming (JDK only, not J2EE)
and design principles are needed for rule developers.

Note: For detailed documentation of the API classes, consult the JavaDocs provided with the API
deliverable.

API alternatives

There are different alternatives for developing rules in Kiuwan, according to the level of
abstraction: Abstract Syntaxt Tree, NavigableNode, XPath or Query API.

Certain primitive objects could be passed in many parts of the rules API and are used in many places in
the Kiuwan API:

Primitive Effect Method to implement

NodeVisitor Apply logic to node void visit(BaseNode)

NodePredicate Does this node satisfy X? boolean is(BaseNode)

NodeSearch "Find a related node from a given node" BaseNode apply(BaseNode)

Navigation Perform certain navigation on AST starting at given
node,
possibly applying another primitive

NodeSet navigate(BaseNode)
NodeSet navigate(BaseNode,
NodePredicate)
void visit(BaseNode, NodeVisitor)

As examples for typical , think of finding the variable declaration for a certain variable NodeSearch
usage, function definition for a call, container node for any other node, etc.

Navigation combines traversal + primitive, used in Query API (discussed later).

Abstract Syntax Tree (low-level and high-level) API

Kiuwan engine analyzers parse source code using a programming language grammar parser. The parser
translates plain text to a tree-based representation of the source code (named). Abstract Syntax Tree
This tree is a low-level representation of the source code file, and represents in a very detailed way all
the elements, from top-level language elements (like class or function definitions) to the literals and
expressions contained in the source file. Low-level AST is named in what follows.LLA

For certain languages, an alternate high-level AST () is produced from the low-level AST. The high-HLA
level AST represents the main structures in source code, frequently expressed as nodes in a language-
independent way.

The low-level AST (LLA) may have too much detail for what is necessary to implement many rules. The
high-level AST is a condensed view of the source syntax, showing relevant items for the target
programming language (programs, types, functions, statements), but remove punctuation nodes, or detail
nodes (e.g. expressions are leaf nodes in the HLA).

For processing AST (both LLA or HLA), rules could extend , and com.als.core.AbstractRule
implement logic in method . The first void visit(BaseNode ast, RuleContext ruleContext)
argument is the AST root node (e.g. a in Java grammar), and the rule logic must CompilationUnit
navigate the AST to look for the condition that the rule detects. Navigating the AST is rather difficult, but
this level of abstraction is adequate for rules that need access to the finest details of the source code,
that may not be afforded with the rest of the APIs.

Technically, AST is provided as a tree where each node implements the interface com.als.core.ast.
. For some technologies, nodes extends this interface (like BaseNode com.als.core.ast.

 or , see below) that provide extra facilities for NavigableNode com.als.core.ast.TreeNode
searching nodes in the AST.

For most languages, a single AST node type for each language construct is provided (named
CobolNode, PhpNode, CppNode, ...) implementing the common interface BaseNode.
For a few languages (Java, JSP, PowerScript, VB6), a different Java type is provided for each different
grammar construct. The AST nodes provide accessors () to fetch properties.getters

To help processing AST for common needs, a set of utility classes are provided for each technology. See
JavaDoc for full details.

NavigableNode / TreeNode API

This API (class) decorates a BaseNode for any language, exposing com.als.core.ast.TreeNode Na
 interface that simplifies node searches and navigations. Could be used for many simple vigableNode

rules that do not need advanced static analysis facilities.

Note: For certain technologies (like Cobol, JavaScript or PHP), LLA already implements NavigableNode,
which does not need to be wrapped in TreeNode to access extra search methods exposed.

TreeNode is a decorated BaseNode that support many navigation operations. Provide methods for doing
something (finding first, finding all, counting, checking, navigating...) on a certain navigation "axis" in the
tree with respect to wrapped node (children, successors, brothers at left/right, parent, ancestors), using
certain constraints (a predicate, node types), and using a processing paradigm (a NodeVisitor, code in a
for-each loop...).

Decorating a BaseNode is simple: .TreeNode node = TreeNode.on(baseNode)

Child (direct or immediate children) axis:

acceptChildren(NodeVisitor), apply a certain operation (encoded in visitor) to this node and its
immediate children.
child(NodePredicate), to find first direct child matching predicate.
findAllChildren(NodePredicate), returns list of child nodes matching predicate.

countChildren(NodePredicate) and similar methods, to count children matching predicate.
hasChildren(NodePredicate), return true if at least one child matches predicate.

TreeNode itself is an iterable that iterates on direct children:

for(TreeNode child : treenode) {...}

will iterate on treenode children, left to right.

Successor (subtree) axis:

find(NodePredicate, boolean), to look for first node matching certain condition
findAll(NodePredicate, boolean), to look for all occurences of nodes matching a certain condition
accept(NodeVisitor, boolean), to apply a certain operation to this node and all of its descendants
(parent-first)
has(NodePredicate) and similar methods, for checking if at least one of the successors matches
predicate
acceptChildrenFirst(NodeVisitor, boolean), to apply a certain operation to all of this node
descendants, then to this node (children-first)
subtreeBreadthFirst(NodePredicate), to use in a for-each loop to process successor nodes
matching predicate (traversed breadth-first)
subtreeDepthFirst(NodePredicate), also with for-each loop as above (but traversed depth-first)
count(NodePredicate), to count nodes matching predicate

Parent (antecessor) axis:

findFirstAncestor(NodePredicate) or ancestor(NodePredicate), to look for first node matching
certain condition
findAllAncestors(NodePredicate), to look for all occurences of nodes matching a certain
condition
acceptAncestors(NodeVisitor), to apply a certain operation to this node and all of its
descendants
countAncestors(NodePredicate), count of ancestors matching predicate
hasAncestor(NodePredicate), returns true if at least one of the ancestors in path from this to
root matched predicate
onAncestor(NodePredicate), Iterable that permits to process in a for-loop each node in path
from this to root matching predicate

Sibling axis:

getLeftSibling() The immediate brother to the left
getLeftSiblings() Iterator to brothers to the left, traversed from right to left.
onLeftSiblings(NodePredicate) Iterable for processing left brothers that match predicate in a for-
each loop.
getRightSibling() The immediate brother to the right
getRightSiblings() Iterator to brothers to the right, traversed from left to right.
onRightSiblings(NodePredicate) Iterable for processing right brothers that match predicate in a
for-each loop.

Additionally there are safe simple navigation methods that check if the requested parent or child exists,
returning NULLTREE so methods could be chained without fear of runtime exceptions.

Example:

TreeNode n = TreeNode.on(node);
// from n, get first child, then first child of type {{Expression}},
// then go up to parent, then go to second node, then first, then first
again
n = n.child(0).child("Expression").parent().path(1, 0, 0);
if(n.isNotNull()); // Voila! such complex navigation reached node of
interest...

In rules this facility can be used to focus on "node detection" logic, with navigation logic hidden in the
navigation methods of this class.
Sample usage:

new TreeNode(root).find("ProcedureDivision").accept(new NodeVisitor() {
 public void visit(BaseNode node) {
 // Logic for any node under Cobol PROCEDURE DIVISION
 }
}

XPath rules

XPath is a language for searching in trees (typically XML trees, but it could be applied to AST as well).

The simplest way to code a Kiuwan rule is an XPath rule, that express using XPath notation the condition
that AST nodes must match to be considered violations of the rule. An XPath rule is , and declarative
does not need to be programmed, but require a certain knowledge of the AST.

For example, the following XPath expression detects loops without initialization nor update, that may be
replaced by easier-to-understand loops (last predicate exludes "for each" loops):while

//ForStatement
 [count(*)>1]
 [not(ForInit)]
 [not(ForUpdate)]
 [not(Type and Expression and Statement)]

Adequate for simple rules. Typically, naming conventions could be easily verified using XPath
expressions.

For example, if we are looking for the usages of in Java code, the rule may use the XPath System.gc()
expression:

//Name[@Image='System.gc' or @Image='java.lang.System.gc']

NOTE: XPath attribute axis () fetches a AST node property (getter returning a primitive type). @property
For example, invokes getImage() method on context AST nodes.@Image

XPath-based rules could be implemented configuring , passing proper com.als.core.rule.XPath
XPath expression in rule property.xpath

Many convenient XPath functions are provided, for full details on XPath, see the section.XPath

Query API

The class represents a query in an abstract com.optimyth.qaking.highlevelapi.dsl.Query
syntax tree (or high-level tree). Query provides a fluent interface for expressing a search on AST,
specifying the sequence of operations (find, filter, navigate, visit) to perform, starting at a given set of
nodes. Each operation is configured by passing primitive objects (NodePredicate, NodeVisitor,
NodeSearch or Navigation). Then one of the methods should be called to execute the operations run()
registered.

As a simple example, imagine that you need to report getter methods that return null. Such rule could be
implemented in a few code lines:

Predicate isGetter = ...;
NodePredicate returnsNull = ...;
Query q = Query.query()
 .find(methods(isGetter))
 .filter(returnsNull)
 .report();
...
// execute query from high-level root node
q.run(rule, ctx, ctx.getHighLevelTree());

Appropiate primitives could be found for each supported language; for example, for Java, com.
 provides instances for and optimyth.qaking.java.hla.JavaPredicates returnsNull isGetter

.

When a query is executed using over a certain set of initial nodes (typically the root HLA or LLA run()
node), nodes reached by each operation are remembered and act as context nodes for the next
operation in sequence.

Operations that could be registered in a Query are:

Operation Effect Signature

find sucessors Find all successors matching predicate find(NodePredicate match)

http://www.w3.org/TR/xpath/
https://www.kiuwan.com/docs/display/K5/XPath+API

find following a
navigation

Find nodes traversed by navigation, matching
predicate

find(NodePredicate match, Navigation
navigation)

navigate Traverses the given navigation from current
(context) nodes

navigate(Navigation)
navigate(NodeSearch)
navigate(String xpath)

filter Filter current context nodes filter(NodePredicate)
filter(Query)

visit Visits each node in current context visit(NodeVisitor)

navigate & visit Visit each node reachable via given navigation
with visitor

visit(NodeVisitor, Navigation)

custom operation Registers a custom operation operation(QueryOperation)

snapshot Create a "snapshot" of current context nodeset,
giving it a name

snapshot(String)

report Emit a rule violation for each current context node
or snapshot,
using the ToViolation object to custimize violation
to emit

report()
report(String snapshot)
report(ToViolation)
report(String, ToViolation)

execute query Executes the query, specifying initial node(s) run(Rule, RuleContext)
run(Rule, RuleContext, BaseNode...)
run(Rule, RuleContext, NodeSet)

If you know about XPath, the providecom.optimyth.qaking.highlevelapi.navigation.Region
s Navigation instances for each XPath axis:

Region name XPath axis Nodes traversed

SELF self:: context node itself

ROOT / go to root node

CHILDREN child:: immediate children

PARENT parent:: parent node

ANCESTORS ancestor-or-self:: ancestors, including self

SUCCESSORS descendant:: subtree nodes from node, not including itself

LEFTSIBLINGS preceding-sibling:: Siblings of node at left, not including itself

RIGHTSIBLINGS following-sibling:: Siblings of node at right, not including itself

PRECEDING preceding:: Nodes appearing before node (before in code text)

FOLLOWING following:: Nodes appearing after node (before in code text)

NOTE - Thread-safety: Query is thread-safe if primitives passed are thread-safe. This means that you
may use a Query object as instance field of a rule, and call query.run() on the visit() method of the rule to
process each input source, in multi-thread analysis this do not produce race conditions.

Examples:

Find unused vars (Java)

private static final Query unusedVars = Query.query()
 .find(varsPredicate)
 // An unused var should not have initialization with side-effects
 // (because then, declaration cannot be removed)
 .filter(not(hasSideEffectInInitPred))
 .filter(not(hasUsages))
 .report(reportVarName); // special reporting

See sample rule for the full com.optimyth.qaking.rules.samples.java.UnusedVars
implementation.

Avoid data references in arithmetic expressions where data item is DISPLAY (Cobol)

private final Query query = Query.query()
 .find(dataRefInArithStmt) // get data references in arithmetic statement
 .filter(isDisplayType) // ... but only DISPLAY / DISPLAY-1 types
 .report();

See sample com.optimyth.qaking.rules.samples.cobol.NoDisplayDataInArithmeticOp
rule for full implementation.

Additional static analysis facilities

Static analysis is more than a syntax issue. Some well-known static analysis elements are: type
resolution, symbol table, data-flow analysis, tainting propagation, constant or expression propagation,
semantic metadata for technology APIs (and many more).

For certain technologies, extended static analysis facilities are provided. Most of them are located in the h
 and JAR files.ighLevelAPI.jar codeAnalysis.jar

Control-flow graph (CFG) and data-flow analysis

The is a graph where nodes represent statements and other code items (like control-flow graph
variable declarations or function declarations). Nodes are connected according to the control flow (a
statement s1 is connected to statement s2 if s2 may follow execution of s1 under certain conditions).
Traversal of the CFG is useful to follow control logic, and certain properties of data flowing through the
statements in the CFG could be derived statically (this is called "data-flow analysis").

An instance of the CFG is compiled for each behavioural unit (like a function or method). For some
languages (e.g. in Cobol) the behavioural unit considered could be more global (e.g. the whole program
in Cobol).

Dummy start and end nodes are added to the CFG (typically all exit points terminate in the end node,
while the start node represents the entry point to the behavioural unit).

Two objects are used: (represents a node in the CFG) and (representsDataFlowNode DataFlowGraph
a CFG for a certain behavioural unit). These elements are under com.optimyth.qaking.

 package.codeanalysis.controlflow

AST nodes for languages with CFG support implement the HasCFG interface:

DataFlowGraph getDataFlowGraph()
boolean hasDataFlowGraph()
DataFlowNode getDataFlowNode()
boolean hasDataFlowNode()

To build the CFG containing a certain AST node, the API provides instances of , ControlFlowSupport
builder of the CFG from the AST for a particular behavioural unit. For example, for JavaScript and Cobol:

DataFlowGraph cfg = new JavascriptControlFlowSupport(ctx).getFlowGraph
(function);
DataFlowGraph cfg = new CobolControlFlowSupport(ctx).getFlowGraph
(procedureDivision);

Two operations are typical with the CFG:

Traversal (forward- or backward-, depth- or breadth-first) from a starting point, that could
traverse the CFG (without infinite loops, as there may be cycles in the CFG) following the
desired navigation. The com.optimyth.qaking.codeanalysis.controlflow.

 provides the navigation methods, typically calling a user-provided ControlFlowNavigator Co
 with each CFG node traversed in the navigation.ntrolFlowVisitor

Process all potential paths between two CFG nodes: com.optimyth.qaking.
, that discover potential distinct paths codeanalysis.controlflow.paths.PathFinder

during a certain CFG traversal and calls an user-provided with each matching PathVisitor
path found.

The following image summarizes the API for operating with control-flow graph:

blocked URL

http://appsval.optimyth.com/manuals/download/attachments/4785276/cfg.png?version=1&modificationDate=1419349185000&api=v2

Library metadata

Document the behaviour for items (global variables, macros, functions / methods, types / classes...) in
external APIs (e.g. class or function libraries common for target technology).

Library metadata facility permits to declare the metadata information (in an XML file descriptor) for each
'library', and to find metadata for a particular entity.

A object provides a façade for queries on library metadata. The relevant classes are located Libraries
under package and subpackages.com.optimyth.qaking.codeanalysis.metadata.model

Typically, the base rule (or utility) for technologies supporting Library Metadata provides a Libraries
 method to get the instance for a particular programming loadLibraries(RuleContext) Libraries

language.

Entity items have different incarnations: LibraryDescriptor, FieldDescriptor,
FunctionDescriptor, GlobalObject, HeaderDescriptor, MacroDef, Type,

.ClassDescriptor, MethodDescriptor

Library Metadata is used by facility in order to document the behaviour of API items. tainting propagation
For tainting propagation, items may declare a Neutralization (declaring a point where inputs are
"neutralized", (declaring an external input point) or (declaring a point where the API gives Source Sink
access to a resource).

See javadoc for full details. Library Metadata XML descriptors could be found under the JKQA_HOME
 directory./libraries

Tainting propagation

Detect a dataflow path connecting a 'source' (info input) and 'sink' (a point where API provides access to
a sensitive resource). Relevant for security flaws (like 'injection vulnerabilities': SQL injection, cross-site
scripting, etc.) Leverages control-flow graph and library metadata to perform.

Variables affected by sources (like external inputs to program) are 'tainted', and this condition propagates
according to the semantics of statements and API items between sources and sinks. Taintedness status
may be intercepted possibly by a 'neutralization' (a point where data is checked or transformed), that
'untaints' the data.

For technologies with tainting propagation support, a tainting rule simply declares what sources, sinks
and neutralizations should be considered. For example, a "Path Traversal" security rule in PHP is simply:

Path traversal rule for PHP

public class PathTraversalRule extends AbstractPhpTaintingRule {
 private static final String SINK_KIND = "path_traversal";

 private List<SinkChecker> checkers;

 @Override public void initialize(RuleContext ctx) {
 super.initialize(ctx);
 Predicate<SinkDef> sinksPred = getPredicate(SINK_KIND);
 checkers = getSinkCheckers(sinksPred, ctx);
 }

 @Override protected void visit(BaseNode root, RuleContext ctx) {
 propagateTainting(root, getSourcesPredicate(), checkers, ctx);
 }
}

Local / Global Symbol Table

Model code items with a given name (a "symbol": functions, types, global variables...) that could be later
searched for.

Symbol Table could be (: all source code inputs are parsed and processed first to compile Global GST
global symbols), or (: only the symbols declared in current source unit are compiled).Local LST

Global Symbol Table (GST)

Entities modelled in the GST are: SourceFile, Function, Program, Relation, Type,
 (under package {{com.optimyth.qaking.globalmodel.model }}, see JavaDoc TypeMethod, Variable

for full details).

Certain dependencies (like inheritance) are modelled in the GST.

The GST facilitates global analysis, but should be used with caution, as it is not as efficient in execution
times as pure local analysis.

Note: As building the GST is expensive, it is built only if at least one of the rules in the analysis declares
its intention to use GST (rule decorated with the annotation).@UseGlobalSymbolTable

The façade (in package) provides SymbolTable com.optimyth.qaking.globalmodel.query
access to the GST:

SymbolTable SymbolTable.get(RuleContext); // Get instance representing the
GST

SymbolTable provides many query methods for finding item(s) in the GST, but additional query utilities
are provided for extensive searches on certain item types:

FunctionQuery: queries for function and method entities.
InheritanceQuery: queries on type inheritance information.
TypeQuery: queries over types (classes).
VariableQuery: queries over instance variables (fields) and global variables.

See javadoc for package for full details.com.optimyth.qaking.globalmodel.query

For example, to check for indirect inheritance on .Serializable interface:java.io

SymbolTable table = SymbolTable.get(ctx);
if(table != null) {
 // Check only indirect inheritance (direct inheritance is processed in
visit)
 InheritanceQuery inh = new InheritanceQuery(table);
 for(InheritanceRow rel : inh.findInheritanceRows("supername='java.io.
Serializable' AND level>1")) {
 String subtype = rel.getSubtype();
 Variable field = table.findVariable(FIELD_NAME, subtype, "java");
 ...
 }
}

See sample rule com.optimyth.qaking.rules.samples.java.SerializableWithVersionUid
under for full details.JKQA_HOME/doc/samples

SymbolTable provide a mechanism for getting AST of code files containing declarations referenced in
current AST ("inter-AST searches"). As an example, imagine that the definition of functions called at
certain points need to be processed, and that definition is not in the code file with the call:

SymbolTable table = SymbolTable.get(ctx);
...
BaseNode callNode = ...;
String calledFunction = FunctionUtil.getShortFunctionName(callNode);
// Find definition for the called function, by name
Function def = table.findFunction(calledFunction, null, null);
if(def != null) {
 // Loads the AST with the function declaration
 BaseNode defNode = table.loadNode(def);
 ...
}

Local Symbol Table (LST)

For certain technologies (see table below), a (LST) could be compiled efficiently to Local Symbol Table
model specific symbols defined in current code unit. LSTs are used, for example, for locating usages for
a variable declaration, or declaration for a variable usage.

A few examples may help to understand how LSTs are compiled and used:

http://java.io

LST for PHP

 LocalSymbolTable symtab = LocalSymbolTableBuilder.getSymbolTable((PhpNode)
root);
 symtab.visitForward(new Visitor() {
 public boolean onSymbol(Symbol symbol) {
 // ignore symbols with usages or global
 if(symbol.hasUsages() || symbol.isMagicConstant()) return true;

 if(symbol.getKind()== SymbolKind.PARAMETER) {
 // Check that the parameter symbol is in a function with body.
 // Interface methods and abstract methods do not use their
parameters
 if(hasBody(symbol.getNode())) {
 report(symbol, "{0}: unused parameter {1}", ctx);
 }

 } else if(isPrivateField(symbol)) {
 report(symbol, "{0}: unused private field {1}", ctx);

 } else if(isPrivateMethod(symbol)) {
 report(symbol, "{0}: unused private method {1}()", ctx);
 }
 return true;
 }
 });

See JavaDoc for class.com.optimyth.qaking.php.symboltable.LocalSymbolTable

LST for JavaScript

// Build symbol table for this source unit
LocalSymbolTable symTable = LocalSymbolTable.build((JSNode)root);

// Fetch configured globals in source code comment
Set<String> configuredGlobals = getGlobals((JSNode) root);

// Report unused vars
List<SymbolEntry> unusedList = symTable.getUnusedSymbols(UNUSED,
NodePredicate.TRUE);
for(SymbolEntry unused : unusedList) {
 String msg = getMessage() + ": unused symbol " + unused.getSymbol().
getName();
 reportViolation(ctx, unused.getDefinition(), msg);
}

// Report undefined vars used
List<SymbolEntry> undefList = symTable.getGlobalSymbols(UNDEF);
for(SymbolEntry undef : undefList) {
 if(configuredGlobals.contains(undef.getName())) continue;
 String msg = getMessage() + ": undefined symbol " + undef.getSymbol().
getName();

 for(JSNode undefUsage : undef.getUsages()) {
 reportViolation(ctx, undefUsage, msg);
 }
}

See sample rule .com.optimyth.qaking.rules.samples.javascript.AvoidUndefUnusedVars

LST for Java

public class AvoidLocalVariablesDifferUpperLowerCase extends AbstractRule {

 protected void visit(BaseNode root, final RuleContext ctx) {
 if (!(root instanceof ASTCompilationUnit)) return;
 ASTCompilationUnit cu = (ASTCompilationUnit) root;
 initLocalSymbolTable(cu);

 TreeNode.on(root).accept(new NodeVisitor() {
 public void visit(BaseNode node) {
 if(node instanceof ASTLocalVariableDeclaration) {
 ASTLocalVariableDeclaration varDecl =
(ASTLocalVariableDeclaration)node;
 Set<String> lowerVars = Sets.newHashSet();
 for(ASTVariableDeclaratorId varName : varDecl.getVariableIds()) {
 lowerVars.add(varName.getImage().toLowerCase());
 }
 Scope scope = varDecl.getScope();
 while(scope instanceof LocalScope) {
 findCollidingVar((LocalScope)scope, varDecl, lowerVars, ctx);
 scope = scope.getParent();
 }
 }
 }
 });
 }

 /**
 * Check that local variables in scope collide with the variable names
declared in varDecl
 * and stored in lowerVars set. If collision, emit a violation
 */
 protected void findCollidingVar(LocalScope scope,
ASTLocalVariableDeclaration varDecl,
 Set<String> lowerVars, RuleContext ctx) {
 for(VariableNameDeclaration vn : scope.getVariableDeclarations().
keySet()) {
 AccessNode influencingDecl = vn.getAccessNodeParent();
 if(varDecl==influencingDecl || !(influencingDecl instanceof
ASTLocalVariableDeclaration)) continue;
 if(influencingDecl.getEndLine() > varDecl.getBeginLine()) continue;
 ASTVariableDeclaratorId id = vn.getDeclaratorId();
 String varname = id.getImage().toLowerCase();
 if(lowerVars.contains(varname)) {
 report(this, varDecl, ctx);
 }
 }
 }
}

	Rule Development Manual

