Create new Kiuwan Rules

This guide shows you how to create new rules for your Kiuwan Analysis without any coding.
If you are a developer, please visit Rule development
Contents:
Two ways of extending the models with new rules without coding:
® Split the behavior
© Example 1. CBO in java.

© Example 2. Ccn at function scope.
© Grammar for expressions

Split the behavior

The first method is basically to create a new rule based on an existing one in your library. Let me go
directly to an example.

You can find the following rule definition in your Kiuwan library (Models management — Rules — Library):
Do not import the specified packages.
Do not use the classes included in the specified packages, so you will prevent the use of dependent

classes of the virtual machine or other private classes. The comma-separated list of patterns of packages
is parameterized.

This rule is classified under ‘Portability’ and priority ‘Very High'.

Version 2015/10/23 18:22:24 - Current =

import x Q 5 o o,

—

o & Name
A 3 4 Java

< + Maintainability

4 Portability
4 Very high
Da not import the specified packages

This is a very general rule. You can create new rules to not allow to import specific packages like:

® ‘com.sun.* or ‘com.ibm.* packages may be defined as a portability issue (http://stackoverflow.
com/questions/8565708/what-is-inside-com-sun-package).

® Use java concurrent collections instead java collections as a reliability issue (https://docs.oracle.
com/javase/tutorial/essential/concurrency/collections.html).

® Replace java.util.LRandom with the more secure java.security.SecureRandom. (http://docs.oracle.
com/javase/7/docs/api/java/util/Random.html, http://stackoverflow.com/questions/11051205
/difference-between-java-util-random-and-java-security-securerandom).

Based on this rule, you can write new rules simply by changing the packages parameter of the rule. Let
see the details of this rule:

RULE INFORMATION

Codeexamples | Details | Classification
w Optimyth ibrary / Java langusge IPncmy Repauairncuuy|

Very hard
Hard

Message Normal
RGP/ Easy
very high Very easy

Description Notes

Benefits Parameters

Parameter Value

packages Asunl1*S, *sun§

https://www.kiuwan.com/docs/display/K5/Rule+development
http://stackoverflow.com/questions/8565708/what-is-inside-com-sun-package
http://stackoverflow.com/questions/8565708/what-is-inside-com-sun-package
https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html
http://docs.oracle.com/javase/7/docs/api/java/util/Random.html
http://docs.oracle.com/javase/7/docs/api/java/util/Random.html
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom

RULE INFORMATION

Defnion || Code exampls Clsscation

Internal name (OPT JAVA RGP AvoidPackages

Firmware 0
Version tag
Release date 2015/04/24 23:44:15
I.].:va class comals.clases port rgpAvnmPackagesI
Java version 15
Internal parameters
Parameter

Value

The first step is to open the Rule Developer distributed with Kiuwan Local Analyzer, and create a New
rule:

&

nces of o
ider inse

Description. [Insar Repairifficuly * [Essy
(Cons

Execution information

Rule classfcation

* [CUS JAVASecureRandom 1| Category* [Securty 5
Name™ [o il Ranaom 1 recomeraes] Goguget [|
Message [| Prioity*

(Veyhgr 4

[[com als clases port rgp AvoidPackages]
Parameters (e]lm
EaTE ‘ ‘ T pacages ‘Paciages Java i Random '|
Orawbacis ‘
] Seve ule source code in [m
] Save e definitionin [C [blog\rule-Gevelopment-with-zero-code] [
| @ ceanform [save | [X cose |
ol et x
Volton example Repaation exampie
[import java.util.Aandon; lmm Java. securi ty.SecureRandosf,

A couple of things to remember:

1.
2.
3.

Rule identifiers must begin with CUS.
The class name has to be the same as the original Kiuwan rule.

Parameters are the same as the original rule. Update only the parameter value to the required
value.

4. Itis advisable to change the name and description of the rule to match the new rule behavior.

Once you save the rule, the Rule Developer will automatically create an XML file with the new rule

definition. The second step is to import this XML file definition in your library and model (Models
management > Rules > Install rule definitions):

Kiuwan 7

Version

LIECI N]

& Name

P R Total

https://www.kiuwan.com/docs/display/K5/Quick+start+guide

INSTALL RULE DEFINITIONS

Upload rule definition file(s)

Select file(s) to upload { CUS.JAVA SecureRandom.rule.xml Upload

You can upload multiple rule definitions (.rule xmi files or ZIP files) created with Kiuwan Rule Developer.

Summary

Files Valid rules Invalid rules

1 0

Note that installed rules can only be used in local analyses. Learn more

And finally, assign this model to your application and run an analysis on it. You can see the new defects
found by the rule in the defects screen:

, | [Portmpotie et s ;=
. 1 D jave-src/Queryixtensionsjava
. 1 D jave-src/QueryExtensionsjava

Rule to have violations based on metric values

When you analyze your code, Kiuwan returns three types of information:
1. Indicators. These are complex metrics calculated from the defects and simple metrics found in
your code. Some examples: Risk Index, Global Indicator, Effort, etc.
2. Defects. These are all breaches of the rules in your model.
3. Metrics. These are measurements of some characteristics of the source code. Examples are
lines of code (LOC), Cyclomatic Completixy (https://en.wikipedia.org/wiki/Cyclomatic_complexity
), Fan-out, etc.

Not all metrics provided by Kiuwan are taken into account for the indicators. For example, you can get
the CBO for your java classes, but their values do not modify the Global Indicator.

To achieve this, it would be interesting to create a new defect each time the metric threshold is breached.
Kiuwan uses this idea in several of its rules, like the duplicated code, the cyclomatic complexity, etc.

Now we are going to explain how to extend this mechanism to any metric calculated by Kiuwan.

Example 1. CBO in java.

In Kiuwan’s metrics library (Models management — Metrics — Library) you can find the following definition
for the CBO metric:

kiuwan

Rules | Metrics
Version 2

Entera te Q B o VT Q O @ « Activeinmodel
& Name Total Name
» Complexity ae) A Coupling b
« Coupling 13)

Abstraction Description
| Couplin een object classes |

Depend yeles

epth of inheritance tree
Distance

https://en.wikipedia.org/wiki/Cyclomatic_complexity

METRIC INFORMATION
Defiition || Code examples | Detais || Classification
Optimyth library / § languages implementations Intrinsic properties
Description Betteris B
Scope Long... | Pack.. File | Class

Languages

METRIC INFORMATION

Code examples Classifcation

Available languages | ETE =

Definition

Internal parameters.

Internal name _OPT cbo - OPTCPPCOUPLING CBO | Parameter Value

Fimware 0

Versiontag ~ v272-qmm1625
Release date ~ 2015/10/16 21:05:00

Javaclass comals.cpp.metrics CboCppMetricRule

You can now create a new rule definition with the Rule Developer that will check the value of the CBO

metric against a threshold:

Role detail

Code examples.

Rue Rule

Id [[cusaavaceo

r Category Waintanabilty

Language &0

]
Name* | Figh couping beween abject clsses]
|

Jld L e

Message [Pricity Figh
Descption [CB0 def by i =t 5 g
et et o retrenced o h b of ek i ——
referanced the class. Execution info
=" o ascor e e aeue]

Parameters

Reference |

Le]jla]

Beneits

Drawbacks

Remember:

. Rule identifiers must begin with CUS.

A WN PP

the specific metric, i.e. High
In this example, the expression is:

program: CBO > 2

. Class name has to always be: com.als.core.rule.MetricThresholdsRule.
. You need to add a parameter, called definition, with the expression to check.
. Itis advisable to define a name and a description for the rule that explains the rule behavior for

IMPORTANT: white space is mandatory between all operators and operands in the

expression.

Once the rule is installed in your model, and a new analysis is run, you will get defects like the following:

Searchbyrulename Priority Characteristc Language Groupby
Q - Maintainabilty - & e Clearall
Fles Defects Rule Priorty Characteristic Language Effort
1 1 High coupling between object classes ° = Maintainabilty Java 4h00
1 D java-src/HighCBOjava

Notice the first word in the expression, program. It indicates the scope for the values of the metric to
use. Different metrics may have different scopes to calculate the metrics, as we will see in the next

example.

Example 2. Ccn at function scope.

Let's see how to create a new rule-based in a metric with function scope.

@ Cyclomatic complexity: The formula for calculating the metric corresponds to the sum of the
number of conditions and the number of returns or exits, where the number of exits is never

lower than 1.

For the cyclomatic complexity you can define the following expression:

function: ccn > 5

So, the definition of the new rule will be:

B Rule detail

Defintion | Cods examples

Rule classfcation

s] cesyr (e 5
Name * Functions with High CCN Language * < ~]
Hessge Pyt [B

Descripton [The

Repairiffculy* (Hard el

Clss® comis core ol PevicThresholdsule
Parameters i
Reference Lelld]

o e |

Drawbacks:

Import this new rule in your model (as explained in the case above), run a new analysis, and you will get
this type of defect when the Cyclomatic Complexity of a method (in C, for example) is greater than 5:

Files Defects Rule Priority Characteristic Language Effort

1 4 Functions with High CCN @ = Maintainability c 16h 00
4 D 72Manc

£8_Calc(const Ulnti6 *src, const UIntis *srclim)

yoe *dest, const

nt16 *szclim

FileTineTostring(const CNtfsFileTime *nt, char *s)

L main(int mumargs, char *args(])

Grammar for expressions

In the above examples, we saw that the definition parameter value for ‘com.als.core.rule.
MetricThresholdsRule’ class defines the expression to check. The expected format is:

scope: expression (;scope: expression)*
‘Scope’ has to be one of these values:
® program (a.k.a. file)

® type (depends on the language. Valid values are: class, interface, struct, enum)
® function (functions or methods)

The expression also support the following operators:
e tpn ik U (arithmetic operators)
® "and" and "or" (logical operators)
o mmn ngn mon ngon w——n M=n (comparison operators)

The metric name you use in the expression is the metric short name. For example, for the metric internal
name: OPT.cbo, the metric short name is: cbo.

You can find the metric internal name in the details tab of the metric information window (see above
captures).

This type of rules will report a violation when the defined expression evaluates to true.

	Create new Kiuwan Rules

