Ruby on Rails

Ruby on Rails and the Kiuwan Solutions

This guide explains how to use Kiuwan if your source code is written in Ruby on Rails.

Contents:

® Ruby on Rails and the Kiuwan Solutions

O Integrating an external engine in only three steps
" Rules definition
® |mport this definition to your Kiuwan rules library
" Format converter

© Analysis of an application
= Analysis with Brakeman
= Conversion
= Analysis with Kiuwan

© Ready to get the most out of Kiuwan

Kiuwan Code Security does not offer only source code analysis, but also has the feature of categorizing
your rules, create models and Action Plans according to your needs, generate results and share results
in the cloud. Although it is not possible to analyze Ruby code directly, it is possible to import the defects
or vulnerabilities found with other engines into Kiuwan and make use of the other features.

In the following guide, we will use Brakeman to analyze the code and integrate it with Kiuwan Code
Security.

Brakeman is an open source engine designed to find security vulnerabilities in Ruby on Rails
applications.

Integrating an external engine in only three steps

Integrating an external engine in Kiuwan requires three steps:
1. Define the rules of your external engine in a Kiuwan format (ruledef) and import them in your
2. g]gr?\ile.rt the output result report of the external engine to a Kiuwan results report format.
3. Analyze the application and upload the results to Kiuwan.

As an example, we are going to use BRAKEMAN as an external engine, and integrate it with Kiuwan.

Rules definition
First, you need to import the Brakeman rules (checkpoints, in Brakeman jargon) in your Kiuwan library.
Brakeman's definitions can be found here.

Kiuwan's ruledefs are definition files in XML format. We can use the Kiuwan Rule Developer tool to
create these documents, see the installation instructions here.

After logging in with your Kiuwan account, in the initial screen, click New to create a new rule:

) - Kiuwan Rule Developer - o IEN
1 Testsource code _ o o[t Smaxuee oo
(s Open | [@ BuiisasT Language [Java - RN
Search | v J[_* | CJRegularexpressons [] Case sensiive
w Rue - Xpath | Grooy | Messges oo
[Open \ 7 ©becute | £ Conraue 0E
Open ol
e formston | Rua srecuion et
kiuwan

The definition form appears:

Here is an example on how to fill it, using Brakeman's Dangerous Send rule.

Image Description

https://brakemanscanner.org/
http://brakemanscanner.org/
http://brakemanscanner.org/docs/warning_types/
https://www.kiuwan.com/docs/display/K5/Quick+start+guide
https://www.kiuwan.com/docs/display/K5/Quick+start+guide
http://brakemanscanner.org/docs/warning_types/dangerous_send/

Rule detai | |

1. A specific identifier for the
rule:
a. namespace: CUS.RUBY.
BRAKEMAN
b. unique code for the rule

o1 (lowercase, no blank

spaces): dangerous_se

P nd

2. The rule name to be

53 displayed.

=) 3. A simple description.

[8 Gemniom] X cose 4. A URL where to find more
information for this rule.

5. Benefits and drawbacks.

6. Choose one of the software
characteristics that will be
mostly affected when the rule
finds defects.

7. The programming language,
Ruby.

8. Choose the priority for this
rule.

9. Choose the repair difficulty of
defects found by the rule.

10. Class: This is an unused field
when we are using 3rd party
engines. Write a dummy
value.

11. Choose a target folder where
the definition file will be saved.

@ Save:
@ Sove.

As extra help documentation, you can include some code examples.

=
e =]
Save e 3 (&]
[8 Ceanform | [@se]) x o)

Once we save the definition, the file CUS.RUBY.BRAKEMAN.dangerous_send.rule.xml appears in the
target folder.

<?xm version="1.0" encodi ng="UTF-8"?>

<rul e-definition xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://ww. optinyth.com schena/definitions/rule" version="1.0">

<rul e i d="CUS. RUBY. BRAKEMAN. danger ous_send" >
<j ava- cl ass>dumy</j ava- cl ass>

<j ava- versi on>1. 6</j ava- ver si on>
<t ags></tags>

<r ef erence><![CDATA[ht t p: / / br akemanscanner . or g/ docs/ war ni ng_t ypes
/ danger ous_send/]] ></ref erence>

<par aneters/>
<code- exanpl es>

<code- exanpl e i d="codeExanpl e"/>
</ code- exanpl es>
<inconpatibilities/>
<rel ated-rul es/ >

<criteria-val ues>
<criteriumval ue ref="CPT. CRl TERI UM VALUE. LANGUACGE_PARSER. RUBY"/ >
<criteriumval ue ref="0PT. CRI TERI UM _VALUE. PRI ORI TY. MEDI UM'/ >
<criteriumval ue ref="CPT. CRl TERI UM VALUE. REPAI R_DI FFI CULTY. LOW / >
<criteriumval ue ref="0PT. CRI TERI UM VALUE. CQM SECURI TY"/ >
<criteriumval ue ref="0PT. CRI TERI UM VALUE. ENG NE. OTHER"/ >
</criteria-val ues>

<i 18ns>

<i 18n ref =" OPT. LANGUAGE. ENGLI SH"' >

<nane><! [CDATA[Danger ous Send]] ></ nanme>

<nessage><! [CDATA[]] ></ message>

<descri ption><![CDATA[Usi ng unfiltered user data to select a Class
or Method to be dynanmically sent is dangerous.]]></description>

<benefits><![CDATA[It is nuch safer to whitelist the desired target
or mnethod.]]></benefits>

<dr awbacks><! [CDATA[]] ></ dr awbacks>

<par aneters/>

<code- exanpl es>

<code- exanpl e ref="codeExanpl e">
<ko><! [CDATA[net hod = par ans[: met hod]
@esult = User.send(nethod.to_sym]]></ko>
<ok><! [CDATA[net hod = parans[:nethod] == 1 ? :nmethod_a :
nmet hod_b
@esult = User.send(nethod, *args)]]></ok>
</ code- exanpl e>

</ code- exanpl es>

</i18n>
</i 18ns>
</rul e>
</rul e-definition>

@ IMPORTANT: You need to manually edit this file and replace OPT.CRITERIUM_VALUE.
ENGINE.QAKING by OPT.CRITERIUM_VALUE.ENGINE.OTHER.

When you have many rule definitions to create, doing them all manually, as described above, can be
inefficient. In this case, you can develop a simple program to automate the task.

That program should read the source where the 3rd party engine has the definitions and create an XML
file for each rule with the above format (one file with all the ruledefs will work as well).

Import this definition to your Kiuwan rules library
To use these new rules in your models you have to import them to your library.
. Open a new session in Kiuwan

1
2. Go to Settings > Models Management
3. Create a new model:

| New Model

Model name |

Description

@ Initial content

® Create from scratch

lersion 2016/12/01 14:43 - Draft v =

Language

5. Upload your created definition file (or files if you have more than one and want to import them

on bulk).
Install rule definitions
Files Valid rules Invalid rules

6. Choose the model where you want to include this rule (you can do this in a later step as well).
The rule is automatically added to the library and in the selected model (if any was selected).
From the library you can add it to any other existing models or the ones you create from now on.
You don't need to do the import again since the rule definition is already in your library.

+ kiuwan 0E IFE

SUMMARY INDICATORS ~RULES ~METRICS

7. Now you can publish the model. This is mandatory if you want to use this model with the
Brakeman rule in our analyses.

¥ mopELs

2016/05/03-2016/11/30 v | PuBLSH

Bulk actions v
Language Characteristic Priority Repair difficulty

Ea v

8. To use the model, go to Settings > Application management. You can create a new
application and assign this model to it:

I Model parameters

Model ruby v

Characteristic Target

Save Cancel

Format converter

Before the next steps, you need a converter program to transform the defects report generated by
Brakeman to a format which Kiuwan understands. Find detailed information about this format in Third
party analyzers.

For Brakeman, the Kiuwan Team has published a sample transformer application in the Kiuwan Github
public account.

You can get the application here.

You need the dist/kiuwan-thirdparty-report-importer-0.2.2.jar file.

Analysis of an application
Once you have your converter, you can analyze a Ruby application and see the results in Kiuwan.
This analysis has 3 steps:

1. Analyze the application with Brakeman.

2. Convert the defects report generated by Brakerman to Kiuwan format.
3. Analyze with Kiuwan Local Analyzer to upload the report to Kiuwan.

Analysis with Brakeman
Assuming that the source code of your application is in c:\myapp\src, we should execute:
%RUBY_HOME%\bin\brakeman.bat --format json --out c:\brakeman_report.json c:\myapp\src

The output format of this report is a json file:

https://www.kiuwan.com/docs/display/K5/Third+party+analyzers
https://www.kiuwan.com/docs/display/K5/Third+party+analyzers
http://brakemanscanner.org/
https://github.com/kiuwan/thirdparty-report-importer
https://www.kiuwan.com/

{
"scan_info": {
"app_path": "C:/_github/ruby/rails_adm n-master",

"rails_version": "4.2.0",
b
"war ni ngs": [
{
"war ni ng_type": "Dangerous Send",
"war ni ng_code": 23,
"message”: "User controlled nmethod execution",
"file": "C/_github/ruby/rails_adm n-master/app/controllers
/rails_adm n/main_controller.rb",
"line": 28,
}
Conversion

In this step, you convert the JSON file generated by Brakerman to the XML Kiuwan format. The output
file must have 'kiuwan_' as prefix.

java -cp kiuwan-thirdparty-report-inporter-0.2.2.jar comkiuwan.inporter.Min
Brakeman c:\brakeman_report.json c:\kiuwan_brakenman. xm -base-fol der= c:

\ nyapp\src

This is the generated report in Kiuwan format:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<ki uwan>
<def ect s>
<vi ol ati on>
<fil e hashed="fal se" |ine="28" nane="app/controllers/rails_adnin
/ mai n_control l er.rb">send(parans[:bul k_action])</file>
<rul e code="CUS. RUBY. BRAKEMAN. danger ous_send"/ >
</viol ati on>
</ def ect s>
</ ki uwan>

Analysis with Kiuwan

In this last step, you will use the Kiuwan Local Analyzer to upload the report to our server. At the same
time, the Kiuwan Local Analyzer will calculate volumetric metrics and will run a duplicated code analysis,
which are mandatory in any Kiuwan analysis.

You should include the parameter:

-X, --extended-reports
Directory where third party reports should be taken from

" oI UMAN_LOCAL_ANALYZER% agent . cnd" -s c:\nyapp\src -n nyrubyappname -c -Xx C:
\ pat h_t o_f ol der _wi t h_ki uwan_br akeman_xni

Ready to get the most out of Kiuwan

In a few minutes we can see the results on Kiuwan.

Select your Ruby application in Kiuwan, and in the Defects screen, you can find the defects detected by
Brakeman, in what file and line of code they are and help information (this is the meta information you put
in the rule definition) for each imported Brakeman rule.

https://www.kiuwan.com/

VIOLATED RULES EFECTS VERY HIGH

Searchbyrulename Prioiy Charscterisic Langusge Groupby
Q - - - & Rie - Cemal
Fes Defects Rule Prionty Charctersic~ Lnguage Effont

2 2 Duplated code: bigblock Description 1o select Class or Method to be

1 2 Dangerous Send G
2 D) spplcontolersrais_adminjmain_controllerrb € & ¢
Reference hip brakemanscanner og/docshwarming types

26 | send (parans :bulk_sction]) Hangerous, send

28 | send (params [:bu1k_sccion]) Benefts arget or method
Violation code:
Fixed code method_b

Additionally, all Kiuwan indicators are calculated taking the Brakeman defects into account. Now you can
benefit from all Kiuwan features including the "what if" analysis to create an action plan that may include
Brakeman defects, generate PDF reports, share the results with your colleagues, etc...

https://www.kiuwan.com/docs/display/K5/New+automatic+action+plan.+What+if+analysis#Newautomaticactionplan.Whatifanalysis-What-IfProcess

	Ruby on Rails

