Getting Started with Rule Development

This guide will help you through the process of creating a custom rule for Kiuwan.

® Basic information
® Let's get started!
* A word about performance

If you are looking for a quick tutorial on how to execute a custom rule analysis in Kiuwan, please check
the Quick start guide page.

You can read more detailed information on this topic in the Rule Development Manual, included in the
Kiuwan Local Analyzer bundle, under the /development folder.

Basic information

A rule for Kiuwan is a program that performs static analysis over the source code. How does this work?

¥

FILESOURCE PARSE ASTTREE

As the diagram shows, the source code passes through a process named parsing to obtain an object
called AST (Abstract Syntax Tree) which is a representation of the abstract syntactic structure of source
code written in a programming language.

Each node of the tree denotes a construct occurring in the source code, so your rule has to travel among
those nodes searching for the conditions which represent a violation of a certain good coding convention.

A rule is nothing more than a Java class which must accomplish the following rules:

® Extend AbstractRule (com.als.core.AbstractRule).
For some technologies, there are more concrete abstract rule classes to extend from: com.als.
cobol.rules.AbstractCobolRule, com.optimyth.sgl.rules.AbstractSqlRule... Each one of them
extends from com.als.core.AbstractRule.

® |Implement an initialize method.
This is where you can recover the values of the properties to customize your rule analysis. This
method will be executed just once per launched analysis.

® |Implement a visit method.
This is where the main functionality of the rule is placed. This method will be executed one time
per analyzed file.

® |mplement a post-process method.
This is where your rule can perform actions on information retrieved during the analysis of each
file. This method will be executed just once per launched analysis.

® Report a RuleViolation (com.als.core.RuleViolation) in the RuleContext (com.als.core.
RuleContext).

https://www.kiuwan.com/docs/display/K5/Quick+start+guide

Example

inport com al s. core. AbstractRul e;
import com als. core. Rul eCont ext ;
inmport comals.core.RuleViol ation;
inport comal s. core. ast. BaseNode;

public class MyDumyRul e extends AbstractRule {
protected void initialize (Rul eContext ctx) {
super.initialize(ctx);
/1 recover properties values. It could be enpty if your rule hasn't
got any property.
}

protected void visit (BaseNode root, final RuleContext ctx) {
/1 rule body...
if (violation) {
/] Report a violation
Rul eViolation rv = createRul eViol ati on(ctx, nodeViol at ed.
get Begi nLine());
ct x. get Report (). addRul eViol ation(rv);
}
}

protected void postProcess (Rul eContext ctx) {
super . post Process(ctx);
/| postprocess body. It could be enpty if your rule doesn't need to
post process any information

}
}

By using the APIs provided you can traverse the AST in a variety of different ways. For further
information, please check the Rule Development Manual, section "API Alternatives”, under the developer
folder in the Kiuwan Local Analyzer distribution.

® Abstract Syntax Tree (low-level and high-level) API.
® NavigableNode / TreeNode API.
® XPath rules.

® Query API.

There are additional static analysis facilities also available*. For further information, please check the Rule
Development Manual, section Additional Static Analysis facilities, under the developer folder in the
Kiuwan Local Analyzer distribution.

® Control-flow graph (CFG) and data-flow analysis.

® Library metadata.

® Tainting propagation.

® Local / Global Symbol Table.

(*) Check the specific coverage of these facilities by language.

Let's get started!

The best way to get to know the API is by developing your first rule. We are going to implement a rule
which is described as follows:

G} Rule description

When developing java source code, there should not be defined methods with more than four
parameters.

First of all, you will need an example of a violation of the convention set for the chosen programming
language. This is usually a short example of how to code against the rule. You will need the same
example with fixed violations as well. Once you have both code fragments, you can parse them using
Kiuwan Rule Developer and then explore the AST corresponding to the code. For this example, we will
condense a violation and a fix in the same Java class:

https://www.kiuwan.com/docs/display/K5/Rule+Development+Manual
https://www.kiuwan.com/docs/display/K5/Rule+Development+Manual

Java source code

public class ExcessiveParanetersSanple {

/1 VI OLATI ON
public void methodWthMreThanFour (String first, String second, String
third, String fourth, String fifth) { }

Il K
public void nethodWthFour(String first, String second, String third,
String fourth) { }

/1 oK
publi c bool ean nethodWthLessThanFour (String first, String second) { }

I
public int nmethodWthNoParans () { }

You can copy and paste this code into the Test Source Code tab in Kiuwan Rule Developer and click Ge
nerate AST. An Abstract Syntax Tree for the java class will be created:

@ CompilationUnit
& G TypeDaclaration

E}ﬁ ClassOrinterfaceDeclaration

Elﬁv Clas=OrinterfaceBody
= — ClassOrlnterfaceBodyDeclaration

E}i MethodDeclaration
(] ResultTyps
= wr MethodDeclarator
E}i FormalParameters

B FormalParameter
B FormalParameter
B FormalParameter

=l FormalParameter
(] Block
- [l ClassOrinterfaceBodyDecla
- [l ClassOrinterfaceBodyDecl
- [l ClassOrintarfaceBodyDeclaration

When you have the AST, you can develop the best approach to traverse the nodes in order to find the
way to determine whether there is a violation of the convention in the code or not. For that, there is a
basic, very useful way to travel to each one of the nodes: the visitor strategy.

Visitor strategy

inmport com als.core. ast. TreeNode;
inmport comals.core. ast. NodeVisitor;

public class MyDumyRul e extends AbstractRule {
protected void visit(BaseNode root, final RuleContext ctx) {
/1 this '"visit' is executed on each one of the source code files
under anal ysis
Tr eeNode. on(root). accept (new NodeVisitor() {
public void visit(BaseNode node) {
/1 this "visit' is executed on each one of the nodes in
the AST of the current file under analysis
11

b
}
}

So, applying this strategy to our rule implementation is as simple as:

My first rule

inmport com als. core. AbstractRul e;
inport com al s. core. Rul eCont ext ;
inmport comals.core.RuleViol ation;
import com al s. core. ast. BaseNode;
inport com als.core. ast. NodeVisitor;
inmport com als.core. ast. TreeNode;

public class Avoi dExcessi veParanet er sRul eJava extends AbstractRul e {

protected void visit(BaseNode root, final RuleContext ctx) {
Tr eeNode. on(root) . accept (new NodeVisitor() {
public void visit(BaseNode node) {

/1 search for "MethodDecl aration" nodes in the AST
if (!'node.isTypeNane("MethodDecl aration")) return;

/1 at this point, we are in a "MethodDecl arati on" node
/1 recover the "Formal Paraneters" node under the

" Met hodDecl ar at i on\ Met hodDecl arator" path
TreeNode formal Paranmeters = TreeNode. on(node). child

(" Met hodDecl arator"). child("Fornal Paraneters");

/1 if there is nore than 4 paraneters defined, we should report a
vi ol ation
if (formal Paranmeters.isNotNull () &anp; &np; fornal Paraneters.
get NuntChi I dren() > 4) {
Rul eViol ation violation = createRul eViol ati on(ctx,
formal Paranet ers. findLi ne());
ctx. get Report (). addRul eVi ol ati on(viol ation);

}
b

But what happens if we want to change the maximum number of parameters allowed in a method?
Would we have to recompile the rule? No! We only need to add a parameter to the rule.

The parameter has to be defined in the rule definition (see Creating a rule in Kiuwan Rule Developer Quic
k start guide), so you can retrieve the value in your rule by using the initialize method.

i Clean form \ Rasave | [X cose

https://www.kiuwan.com/docs/display/K5/Quick+start+guide
https://www.kiuwan.com/docs/display/K5/Quick+start+guide

My first rule with parameters

inport com al s. core. AbstractRul e;
import com als. core. Rul eCont ext ;
inmport comals.core.RuleViol ation;
inport comal s. core. ast. BaseNode;
inmport comals.core. ast. NodeVisitor;
inport com al s. core. ast. TreeNode;

public class Avoi dExcessi vePar anet er sRul eJava extends AbstractRul e {

private static final int DEFAULT_MAX_ PARAMETERS = 3;
private int nmaxParaneters;

public void initialize(Rul eContext ctx) {
super.initialize(ctx);
/'l 'maxParaneters' is the exact pareneter identifier created in the
rule definition
maxPar aneters = get Property("maxParaneters", DEFAULT_MAX_PARAVMETERS) ;

}

protected void visit(BaseNode root, final RuleContext ctx) {
Tr eeNode. on(root). accept (new NodeVisitor() {
public void visit(BaseNode node) {
if (!node.isTypeNane("MethodDecl aration")) return;
TreeNode formal Paranmeters = TreeNode. on(node). child
(" Met hodDecl arat or"). chi |l d("For nal Par anet ers");

/1 if there is nore than 'nmaxParanmeters ' paraneters defined, we
shoul d report a violation
if (formal Paranmeters.isNotNull () &anp; &np; fornal Paraneters.
get Nunthi I dren() > maxParaneters) {
Rul eVi ol ation violation = createRul eViol ation(ctx,
formal Par anet ers. findLi ne());
ct x. get Report (). addRul eVi ol ati on(vi ol ati on);

1)

You can define parameters of different types, as well as define parameters with a regular expression as
value or even with a list of possible values.

Parameters definition

inport comals.core.util.StringUtil;
inmport java.util.regex. Pattern;

public class DumyRul e extends AbstractRule {

private static final String DEFAULT_STRI NG PARAMETER VALUE =
"def aul t Stri ngPar anet er Val ue";
private String stringParaneter;

private static final int DEFAULT_I NT_PARAMETER VALUE = 0;
private int intParaneter;

private static final bool ean DEFAULT_BOOLEAN PARAMETER_VALUE = true;
private bool ean bool eanPar aneter;

private final static String DEFAULT_PATTERN = "~. *Bean$";
private Pattern patternProp;

private static final String DEFAULT_LI ST_PARAMETER VALUE = "val uel,
val ue2, val ue3, value4";

private Set<String> stringParaneterAsSet = new HashSet<String>(4);

private List<String> stringParaneterAsLi st = new ArrayList<String>(4);

public void initialize(Rul eContext ctx) {

super.initialize(ctx);

this.stringParanmeter = getProperty("stringParaneter",
DEFAULT_STRI NG_PARAVETER _VALUE) ;

this.intParameter = getProperty("intParanmeter",
DEFAULT_| NT_PARAMETER _VALUE) ;

t hi s. bool eanPar aneter = get Property("bool eanPar aneter"”,
DEFAULT_BOOLEAN PARANVETER VALUE) ;

String patternStr = getProperty("patternProp", DEFAULT_PATTERN);
this.patternProp = Pattern.conpile(patternStr);

String strVar = getProperty("stringlListParaneter",
DEFAULT_LI ST_PARAMETER_VALUE) ;

this.stringParaneterAsList = StringWil.asList(strvar, ',");

this.stringParanmeterAsSet = StringUtil.asSet(strVvar, ',");

}

public void visit(BaseNode root, final RuleContext ctx) {
/...

}

A word about performance
The rules of thumb to optimize rules:

Minimize the number of queries to the AST.
Get the nodes you need and only the ones you need whenever possible.
Avoid caching AST nodes. When you cache a node you are caching the whole tree.
DO NOT use global variables (fields)*. Use local variables instead. Rules have to be thread-
safel!
® Take advantage of initialize() and postProcess() methods for unique operations like obtaining
the rule’s properties. Both methods are executed just once per rule analysis execution, while visit
() is executed once per analyzed file.
® Avoid using “TreeNode.findXXX" and other methods that produce a list of nodes. Instead of that
use the visitor strategy.

(*) Except for representing the properties of the rule. In this case, the value is the same during the rule
execution, so you won't have concurrency problems.

	Getting Started with Rule Development

