
XPath API
XPath API

Contents

Introduction
XPath basics
XPath functions reference

Basic XPath functions:
Extended XPath functions
Language-specific XPath functions

XPath API
Extending XPathRule

Introduction

XPath is a language for searching in trees (typically XML trees, but it could be applied to AST as well).

The simplest way to code a Kiuwan rule is with an XPath rule that expresses, using XPath notation, the
condition that AST nodes must match to be considered violations of the rule. An XPath rule
is declarative and does not need to be programmed, but requires a certain knowledge of the AST. You
may use the to parse the AST for sample input code and execute XPath expressions Rule Developer
against the parsed AST (XPath operates on both low-level and high-level ASTs).

For example, the following XPath expression detects loops without initialization nor update, that may be
replaced by easier-to-understand loops (first predicate admit for(; loops, while last predicate while
excludes "for each" loops):

//ForStatement
 [count(*)>1]
 [not(ForInit)]
 [not(ForUpdate)]
 [not(LocalVariableDeclaration and Expression and Statement)]

To test such XPath expressions, you may use the Rule Developer tool:

blocked URL

XPath is adequate for simple rules. Typically, naming conventions could be easily verified using XPath
expressions.

For example, if we are looking for the usages of in Java code, the rule may use the XPath System.gc()
expression:

//Name[@Image='System.gc' or @Image='java.lang.System.gc']

NOTE: the XPath attribute axis () fetches an AST node property (getter returning a primitive @property
type). For example, invokes the getImage() method on context AST nodes.@Image

XPath-based rules could be implemented configuring , passing com.als.core.rule.XPathRule
proper XPath expression in xpath rule property.

XPath basics

An XPath path expression uses steps and predicates (enclosed between square brackets [and]) to
select nodes in a tree (AST in what follows). Each step matches a AST node whose type name is the
name of the step. / represents the root node, . represents the current node, .. represents the parent of
current node, while // represents any successor node(s) of the given type.

XPath function calls could be used, represented as . All steps are functionName(arg1, ..., argN)
relative to current node in context (typically initial context contains just the root of the AST).

Each step could be qualified by an XPath axis , representing a navigation from the current axis::step
node. The default axis is children, while is a shortcut for , // shortcut for ,.. parent:: descendant::
and @attribute a shortcut for axis that returns the value of AST node property with that attribute::
name (result of getter method with that name, for the node).

Some examples make the XPath syntax clearer:

http://www.w3.org/TR/xpath/
http://appsval.optimyth.com/manuals/download/attachments/4785280/12.png?version=1&modificationDate=1419349696000&api=v2

//Class/Field[@Name='x']

matches the AST nodes of type "Field" under any node of type Class, with "x" as the value of
the Name property (getName() getter).

/Class[1]/Method[not(FormalParameter)]

matches Method under the first top-level class, without FormalParameter children (i.e. no-
parameter methods).

//CallStatement[matches(@Name, 'PATTERN')]/following-sibling::*[1]

matches the next AST node following any call to a function matching PATTERN.

The following figure shows which nodes correspond to the different XPath axes available (excluding
attribute axis):

blocked URL

XPath functions reference

NOTE: In the function signatures, optional arguments are enclosed between [and]. A sequence of
multiple arguments is represented by '...'.

Basic XPath functions:

Function Meaning Example

empty(a1, ..., aN) True if no args or all args are empty lists or null //Class[empty(Field, Method)]

qak:every(var,
binding, test)

True if test XPath expr (executed on each
value in binding expr bound to var) is true for
all values in the binding expression.

//ConstructorDeclaration[qak:every
('$call', qak:find('calls', .),
'CHECK_ON_METHOD_CALL')]

except(A, B) Nodeset difference: Return items in A but not
in B (alias: difference())

except(//Field | //Method, //*[matches
(@Name, '^get')])

exists(a1, ..., aN) True if args and each arg is non-empty list or
non-null

//Class[exists(Field, Method)]

qak:for(var, binding,
returnExpr)

Return set with values returned by executing
returnExpr for each value in the binding
expression, with var bound to value on each
execution.

qak:for('$x', //Method, 'qak:search
("container", $x)')

qak:
getCommentOn()

Return the code comment on the context node
(null if no comment)

//Method[contains(qak:getCommentOn(),
'password')]

qak:groovy($code,
args)

Evaluate groovy closure with given args //ClassOrInterfaceDeclaration[qak:
groovy('{args, ctx -> args.isPublic() }', .)]

qak:if($test, $expr1,
$expr2)

Return value of $expr1 if boolean($test) is true,
$expr2 otherwise. If no $expr2 is provided,
empty nodeset is returned.

qak:if($clazz[@Interface='true'], $clazz
/Method, $clazz/Method[@Public='true'])

qak:in($left, $right)
\\\
qak:in($right)

Return true if $left is contained in $right (all
elements in $left are in $right). $left is the
context set if not explicitely given.

qak:search('variableDeclaration', qak:
navigate('variableUsages',
//VariableDeclaratorId)) [qak:in(
//LocalVariableDeclaration)]

intersect($first,
$second)

Intersection intersect(//Field | //Method, //*[matches
(@Name, '^get')])

matches(arg,
regularExpr)

True if any substring for arg matches the
regular expression

//Method[matches(@Name, '^get')]

max(a1, ..., aN) Max value in the input argument //Method[@BeginLine < max(../Field
/@BeginLine)]

min(a1, ..., aN) Min value in the input argument //Field[@BeginLine > min(../Method
/@BeginLine)]

node-after($one,
$two)

True if $one appears later in code than $two //Field[node-after(., ../Method)]

node-before($one,
$two)

True if $one appears before in code than $two //Method[node-before(., ../Field[last()])]

replace($str,
$regexp, $subst)

Replace groups matched in str by regexp with
subst pattern

replace(@Name, '^(is|get|has)(.+)$', '$2')

http://appsval.optimyth.com/manuals/download/attachments/4785280/xpath_axes.png?version=1&modificationDate=1419349696000&api=v2

reverse($nodeset) Reverse items in nodeset reverse(//Statement)

root() / root($arg) Get root node except(//Method, root()/Class[1]/Method)

qak:some(var,
binding, test)

True if test expr (executed on each value in
binding expr bound to var) is true for at least
one value in binding expression.

//ConstructorDeclaration[qak:some
('$call', qak:find('calls', .),
'SOME_CHECK_ON_METHOD_CALL')]

subsequence($arr,
$init [, $size])

Extract subsequence from arr starting from init
(starts at 1) up to size

subsequence(//Class, 2, count(//Class -
2))

qak:strict-path
($nodes, $p1, ...,
$pN) qak:strict-path
($p1, ..., $pN)

Return nodes (in $nodes or in context nodes
when not present) that have degenerate
subtree composed of the p1 ... pN successor
node types.

qak:variable('$includes',
//IncludeStatement | //IncludeExpression)
|
$includes[not(qak:strict-path
('Expression', 'UnaryExpression',
'PrimaryExpression', 'String'))]

qak:symmetric-
difference($one,
$two)

Items in one of the sets but not both qak:symmetric-difference(/Class/Method
[@Public='true'], /Class/Method[starts-
with(@Name, 'test')])

union(a1, ..., aN) Same as a1 | ... | aN union(//Method, //Constructor)

qak:variable(var,
expr)

Sets var to expr, returning empty set (so it
could be used in union expressions). Similar to
<xsl:variable>

qak:variable('$f', //Field) |
qak:variable('$m', //Method) |
except($m, qak:hla(qak:navigate
('variableUsages', $f))/ancestor::Method)

Extended XPath functions

Extended XPath functions use primitives, like predicates, visitors, navigations or visitors:

Category Function Meaning Example

Search &
Navigation

qak:accept
($visitor, $arg)

Apply visitor to nodes in $arg. qak:accept($myVisitor, //MethodDeclaration)

Search &
Navigation

qak:filter
($pred, $arg)

Return nodeset with nodes in $arg matching
NodePredicate $pred.

qak:filter('hasUsages', //VariableDeclaratorId)

Search &
Navigation

qak:find
($pred, $arg)

Return nodeset with all nodes matching
pred under each subtree rooted at each
node in $arg

//MethodDeclaration[not(qak:find('calls', .))]

Search &
Navigation

qak:navigate
($navigation,
$arg)

Return nodeset with nodes reachable after
running $navigation starting at each node in
$arg

qak:navigate('container', //PrimaryExpression[...])
qak:navigate('variableUsages',
//VariableDeclaratorId)

Search &
Navigation

qak:query
($query, $arg)

Return nodeset with nodes reachable after
running $query starting at nodes in $arg

qak:query($myQuery, //VariableDeclaratorId)
//VariableDeclaratorId[qak:query($myQuery)]

Search &
Navigation

qak:search
($search,
$arg)

Return nodeset with nodes found after
executing $search on each node in $arg.

qak:search('methodDeclaration', qak:find('calls'))
qak:find('calls')[qak:search($search)]

HLA/LLA
conversion

qak:hla() /
qak:hla($arg)

Return HLA nodes for each context node or
each node in $arg

qak:hla(/xpath/expr/to/nodes, /other/xpath/expr/to
/nodes) qak:hla()/path/on/hla

HLA/LLA
conversion

qak:lla() / qak:
lla($arg)

Return LLA nodes for each context node or
each node in $arg

qak:lla(/xpath/expr/to/nodes, /other/xpath/expr/to
/nodes)

Language-specific XPath functions

For some technologies, a few additional XPath functions (prefixed with qak-LANGUAGE) are provided.

Function Meaning Example

qak-java:typeof
($val, $full[, $short])

True if $var (an attribute) match full/short
type name, or node matches type

//ClassOrInterfaceDeclaration[qak-java:typeof
(@Image, ' .Serializable')]java.io

For better understanding of XPath functions, you may execute the sample XPath expressions
in Rule Developer and try to understand for each example what nodes are looked for.

For example,

//ConstructorDeclaration[
 qak:every('$call', qak:find('calls', .), 'matches($call
/PrimaryPrefix/@Label, "super\.")')
]

looks for constructors (in Java) where all calls are to methods in super class.

http://java.io

XPath API

Often you may use the XPath API to build an XPath expression that you may execute in a rule: Part of a
complex search could be represented succintly by an XPath expression, while other parts of the query
could be implemented by other means. For that, XPath class provides an interface to declarative queries
in the AST.

The class (in module) represents an XPath expression that com.als.core.xpath.XPath qaKingCore
could be executed from a start node (typically a BaseNode). The XPath interface is rather simple:

XPath(String xpath) throws JaxenException;
XPath(String xpath, RuleContext ctx) throws JaxenException;

List selectNodes(Object initial);
Object selectSingleNode(Object initial);
Object evaluate(Object initial);

Sample usage that could be used in custom rules:

BaseNode astNode = ...;
XPath xpath = new XPath("//MyNode/SubNode[@Image='x']", ruleContext);
List nodes = xpath.selectNodes(astNode); // A list of BaseNode (possibly
empty)
BaseNode node = xpath.selectNode(astNode); // The first node matching the
XPath expr, or null

XPath xpath2 = new XPath("//MyNode/SubNode/@Image");
List images = xpath.evaluate(astNode);

The astNode passed could be high-level or low-level AST, depending on the node that you pass as the
initial node.

NOTE: Other parts of the API accept an XPath expression argument. For example, com.optimyth.
 builds a navigation based on XPath expression. qaking.highlevelapi.navigation.XPathRegion

And in some methods have an XPath expression as argument:com.optimyth.qaking.query.Query

// Visit nodes reachable from current context by XPath expression
visit(XPath xpath, NodeVisitor visitor);
visit(String xpath, NodeVisitor visitor);

// Navigate to nodes reachable by XPath expression, starting from current
query context
navigate(XPath xpath);
navigate(XPath xpath, NodePredicate pred);
navigate(String xpath);
navigate(String xpath, NodePredicate pred);

Extending XPathRule

Usually an XPath custom rule does not need a custom Java class with explicit logic. You simply specify
the Java class in the descriptor, and provide the XPath expression com.als.core.rule.XPathRule
in the "xpath" rule property.

In some cases, you may need to set XPath variables to the XPath expression, or provide a non-default
logic for reporting violations at nodes returned by the XPath expression. could be extended, XPathRule
by overwriting two methods:

/**
 * Invoked in rule initialization. Subclasses may add additional logic for
configuring the XPath statement,
 * like setting XPath variables. Default implementation does nothing.
 */
 protected void initializeQuery(XPath xpath, RuleContext ctx) {}

 /**
 * Invoked on each BaseNode matched by the XPath query. Subclasses may
change the rule violation reporting logic.
 * Default implementation simply create and report a violation on the
node begin line.
 * @param node BaseNode where the violation will be reported.
 * @param ctx RuleContext
 * @return RuleViolation created (added to the report).
 */
 protected RuleViolation reportViolation(BaseNode node, RuleContext ctx) {
 int line = node.getBeginLine();
 if(line<=0) line = TreeNode.on(node).findLine();
 RuleViolation rv = createRuleViolation(ctx, line);
 ctx.getReport().addRuleViolation(rv);
 return rv;
 }

	XPath API

