
Kiuwan On-Premises Monolithic Installation Guide
This guide will explain how to install the monolithic version of Kiuwan On-Premises.

Contents:

Kiuwan On-Premises Installation Guide
System Architecture Overview
Server Host Requirements

Installation requirements
Special requirements for RedHat, CentOS, and Fedora

CPU and memory requirements
Dependencies

Installation steps
Step 1: Download and unpackage KOP Installation Package
Step 2: Configure Kiuwan Docker image

KOP Deployment scenarios
Scenario 1 - Direct connection to KOP server

Scenario 1.1 - Direct KOP access through HTTP
Scenario 1.2 - Direct KOP access through HTTPS

Scenario 2 - Connection to KOP server through a
WebServer

KOP Configuration properties
Step 3: Build the Kiuwan Docker image

Step 3.1 (Optional) Moving the image to another server host
Step 4: Executing the Kiuwan Docker container

Step 4.1 Execution in debug mode (only sshd)
Step 5: Making Kiuwan On-Premises run on HTTPS (Optional)

Step 5.1 Create your KOP SSL configuration file
Step 5.2 Create the Private key and Certificate Signing Request
(CSR) for your server
Step 5.3 Create the Keystore and switch from HTTP to HTTPS
Step 5.4 Just in case you are using your own CA, make it valid to
your browsers and Java
Rollback to HTTP

Step 6: Accessing Kiuwan On-Premises
KOP URL
KOP REST-API URL
KOP built-in users

Upgrading your KOP installation
Advanced Configuration
Appendix 1 - Configuring Apache as FrontEnd WebServer to KOP

HTTP Protocol
HTTPS Protocol

Kiuwan On-Premises Installation Guide

System Architecture Overview

Kiuwan On-Premises () is based on a with the following major server KOP client-server architecture
components:

WildFly application server
MySQL database
Redis in-memory datastore

KOP solution is deployed on a (all the components are installed in the same host) centralized server
and website access or (Eclipse, Visual Studio).accessed by users via HTTP by IDE plugins

KOP also supports distributed architecture with high-availability and load-balancing. For these scenarios,
please contact Kiuwan support.

Server Host Requirements

Installation requirements

The Kiuwan On-Premises () solution is deployed on a (all the KOP centralized server host
components are installed in the same host) and accessed by users via HTTP or by IDE plugins
(Eclipse, Visual Studio).

KOP installation process consists of .building a Docker image

The installation must be executed by a Unix user with privileges to execute docker server commands.

During the installation process, you will need to specify a :KOP UNIX user and group

KOP user will the owner of the KOP processes that will run within the docker container
the docker persistent volume will be owned by KOP user

KOP User and Group is specified during the KOP Installation process as and KIUWAN_USER KIUWAN
 properties_GROUP

You can create a KOP user and group by executing the next commands (no special privileges are
needed):

sudo groupadd ${KIUWAN_GROUP}
sudo useradd -g ${KIUWAN_GROUP} -s /bin/false -m -d /home/${KIUWAN_USER}
${KIUWAN_USER}

KOP Persistent Volume is created by the installation process and must be specified as DIR_PERSISTE
 propertyNT_VOLUME

Be sure to dispose of a minimum of 6 GB of free disk space :

3 Gb for Docker image
3 Gb for KOP Persistent Volume

KOP persistent volume contains the KOP database and its size will increase as more Kiuwan analyses
are executed.

The recommended size for KOP persistent volume is 50 Gb
Try to specify an , so you can easily increase it later if neededindependent disk/partition

Special requirements for RedHat, CentOS, and Fedora

Some installation of the above-mentioned operating systems aren't configured with d_type support (see ht
tp://www.pimwiddershoven.nl/entry/docker-on-centos-7-machine-with-xfs-filesystem-can-cause-trouble-

) when-d-type-is-not-supported

 causes Docker to skip the attempt to use the overlay or Running on XFS without d_type support
overlay2 driver.

Existing installs will continue to run, but produce an error. See https://docs.docker.com/storage
/storagedriver/overlayfs-driver/#prerequisites

You can check if your existing XFS filesystem has by running these commandsd_type enabled

$ docker info | grep "Supports d_type:"
Supports d_type: true

$ xfs_info /docker-mount-point | grep ftype
naming =version 2 bsize=4096 ascii-ci=0 ftype=1

In case you get or , you have to d_type: false ftype=0 create a new XFS filesystem with d_type
.support enabled

Server Host Requirements

 kernel version 3.10 or higherLinux

If your OS is , or please check these Special RedHat CentOS Fedora
requirements . for RedHat, CentOS, and Fedora

 version 1.10 or higher installed on your server CS Docker Engine
Connectivity to (i.e. remotely accessible or locally installed) SMTP Mail Server
The first phase of the installation process (building the Kiuwan image) requires Inte
rnet connectivity

If your docker server is running on , or , be sure the filesystem where RedHat CentOS Fedora
docker is installed supports .d_type

If d_type isn't supported, you've to change it as soon as possible to prevent
strange filesystem issues with Docker containers.

http://www.pimwiddershoven.nl/entry/docker-on-centos-7-machine-with-xfs-filesystem-can-cause-trouble-when-d-type-is-not-supported
http://www.pimwiddershoven.nl/entry/docker-on-centos-7-machine-with-xfs-filesystem-can-cause-trouble-when-d-type-is-not-supported
http://www.pimwiddershoven.nl/entry/docker-on-centos-7-machine-with-xfs-filesystem-can-cause-trouble-when-d-type-is-not-supported
https://docs.docker.com/storage/storagedriver/overlayfs-driver/#prerequisites
https://docs.docker.com/storage/storagedriver/overlayfs-driver/#prerequisites

1.
2.

Unfortunately, it isn't possible to enable d_type support on an existing filesystem.

You have :two options

either on it, oradd a new disk and you create a new XFS partition
. back up your existing data and recreate the XFS filesystem with d_type support enabled

Creating a new XFS filesystem with d_type enabled is as easy at the following command:

$ mkfs.xfs -n ftype=1 /mount-point

CPU and memory requirements

 depend on several factors:Server CPU and memory requirements

how many lines of code will need to be scanned
how many analyses will need to be executed in parallel
how many users will access the web application

Above factors heavily influence host server requirements, but are:minimum requirements

Operating System RAM CPUs Disk Other SW

Linux kernel version 3.10 or
higher

16 GB Intel i7 2,5 GHz with 4
cores

750 GB CS Docker Engine version 1.10
or higher

Note: CPU clock speed and disk speed will affect overall response time.

Above configuration is recommended for a system load that requires continuous service for:

parallel execution of 2 analyses (any additional parallel analysis request will be enqueued, and it
will be executed as soon as any of the running analyses finishes), and
50 concurrent web-users

Additional system requirements can be met by following the next recommendations:

In case you need a higher number of parallel analyses executions, you should add 1 CPU core
and 512 Mb for any additional required parallel analysis
In case you need to improve response time to web users, consider to add 1Gb for every 50
additional web users.

Dependencies

KOP docker image is build based on these external dependencies

Software Version

Ubuntu 16.04

MySQL 5.6 (latest available build)

WildFly 10.0.0.Final

Redis 3.0.7-1

JDK 8.0_202

Ant 1.7.1

Gradle 4.7

AspectJ 1.9.1

NPM 10.7.0

It's important to notice that we're assuming the typical use case where code analyses are
performed locally through and therefore out of server machine Kiuwan Local Analyzer
(typically at a user machine or within a build CI system).

Therefore, when we talk about the analysis we mean 2nd phase of the analysis (i.e. indicator
calculation that is executed within the host server)

https://www.kiuwan.com/docs/display/K5/Kiuwan+Local+Analyzer

MongoDB 3.6.5

MySQL JConnector 5.1.39

Additional Ubuntu packages apparmor-utils \ ca-certificates \ apt-transport-https \
apt-utils \ cron \ curl \ bc \ locales \ openssh-server \
supervisor \ tzdata \ unzip \ vim \ xmlstarlet \ wget

Installation steps

Before installing KOP, make sure that you understand the System Architecture Overview, that your
server host(s) complies with the Server Host Requirements, and that you have properly prepared the
Environment as follows:

Step 1: Download and unpackage KOP Installation Package

Step 2: Configure Kiuwan Docker image

Before installing KOP, make sure your server host complies with the Server Host
Requirements

Installation Steps:

Step 1: Download and unpackage KOP Installation Package
Step 2: Configure Kiuwan Docker image
Step 3: Build the Kiuwan Docker image

Step 3.1 (Optional) Moving the image to another server host
Step 4: Executing the Kiuwan Docker container

Step 4.1 Execution in debug mode (only sshd)
Step 5: Making Kiuwan On-Premises run on HTTPS (Optional)

Step 5.1 Create your KOP SSL configuration file
Step 5.2 Create the Private key and Certificate Signing Request (CSR) for
your server
Step 5.3 Create the Keystore and switch from HTTP to HTTPS
Step 5.4 Just in case you are using your own CA, make it valid to your
browsers and Java

Step 6: Accessing Kiuwan On-Premises

1.

2.

The KOP consists of a tarball gz file () Installation Package docker-for-kiuwan.tar.gz
containing all the , you can obtain the latest version .kiuwan docker files here

Copy the distribution tarball to your host server’s installation directory
($KOP_INSTDIR)
Uncompress the distribution tarball:

tar xvzf docker-for-kiuwan.tar.gz
This will create a $KOP_INSTDIR/ directormaster.YYYYMMDDHHMM.buildnumber
y with all the kiuwan docker files
In $KOP_INSTDIR/master.YYYYMMDDHHMM.buildnumber you will find a file
named where you will configure the Kiuwan docker image.Dockerfile

KOP Licenses are distributed through a zip file that contains two license distribution zip
files:

license.zip
configq1.zip

To install the licenses:

Copy both zip files to the "license" directory of your KOP installation directory
cp license.zip $KOP_INSTDIR/master.YYYYMMDDHHMM.buildnumber/lice
nse
cp configq1.zip $KOP_INSTDIR/master.YYYYMMDDHHMM.buildnumber/lic
ense

Continue configuring and building your KOP image

Please visit is you need to reinstall (or upgrade) licenses after How to Install KOP Licenses
the docker container is built.

https://www.kiuwan.com/pub/kw4docker/docker-for-kiuwan.tar.gz
https://www.kiuwan.com/docs/display/K5/How+to+Install+KOP+Licenses

KOP Deployment scenarios

Before to install KOP, you should decide your . KOP deployment scenario

Below picture displays these different scenarios

Scenario 1 - Direct connection to KOP server

First, you should . decide on the external URL that KOP clients will use By KOP clients, we mean
Browsers, Kiuwan Local Analyzer, Kiuwan for Developers and API-REST clients.

To configure your KOP in this scenario, please follow the next steps

Scenario 1.1 - Direct KOP access through HTTP

Your URL will be something like http://mykop.mydomain.com:7080/saas

1.

2.

After unpackaging, you should .configure the docker image to be built

Configuration of Kiuwan docker image is currently done by creating a configuration file (setting
) that will be used during the image building process.s.custom

There's a file () you can use as a template to configure your settings.settings.tpl

Create settings.custom file by copying the template file
cp settings.tpl settings.custom

Edit the properties of settings.custom file

1.
a.
b.

2.
a.
b.

KOP Deployment scenarios

Different KOP deployment scenarios are depending on using an intermediate web server or
accessing directly the KOP app server:

Direct connection to KOP AppServer
through HTTP
through HTTPs

Connection to KOP AppServer through a WebServer
through HTTP
through HTTPs

IMPORTANT: the KOP installation process will create a docker image that will use internally
this URL.

After building the docker image, if you decide to change the configured URL you must
create the image again.

So be sure of your KOP URL before creating the image.

http://mykop.mydomain.com:7080/saas

1.

2.

You must configure below properties:

 PropertyName Value Comment

KIUWAN_HOST
KIUWAN_PORT

mykop.
mydomain.
com
7080

Hostname (, see note below) Fully Qualified Domain Name
and number to access KOP.port

These variables will be used to build the Kiuwan URL.

Example (with default values):

http:// :7080/saaskop.mydomain.com

Fully Qualified Domain Name (FQDN): https://en.wikipedia.
org/wiki/Fully_qualified_domain_name

Must match KIUWAN_WEBSERVER_HOST

KIUWAN_WEBSERVE
R_PROTOCOL

http

KIUWAN_WEBSERVE
R_HOST

mykop.
mydomain.
com

Must match KIUWAN_HOST

Scenario 1.2 - Direct KOP access through HTTPS

Your URL will be something like https://mykop.mydomain.com:7080/saas

Procedure :

First, create the image as HTTP using 1.1 HTTP scenario configuration (PremisesInstallationGui
)de-Scenario1.1-DirectKOPaccessthroughHTTP

Once the image is built, convert it to HTTPS following steps described at PremisesInstallationG
 uide-Step5.(Optional)MakingKiuwanOnPremiserunningonHTTPS

Scenario 2 - Connection to KOP server through a WebServer

In this scenario, a web server (typically Apache) is used as a frontend server to redirect to the KOP
.app server

As in the “direct” scenario, you should establish the URL to be used to connect to KOP.

Let suppose that will be something like http://mykop.mydomain.com:80/saas

Additionally, you will need to configure the , for example, “internal” KOP app server URL http://my_inter
nal_kop.mydomain.com:7080/saas

Please note that WebServer can communicate to the KOP app server either through HTTP or AJP. You
can configure the corresponding ports (.KIUWAN_PORT and KIUWAN_APPSERVER_AJP_PORT)

Visit for help on how to configure ApacheAppendix1-Configuring Apache as FrontEnd WebServer to KOP

 PropertyName Value Comments

HTTPS [ON | OFF]

http://kiuwan.mydomain.com/
http://op.mydomain.com
https://en.wikipedia.org/wiki/Fully_qualified_domain_name
https://en.wikipedia.org/wiki/Fully_qualified_domain_name
http://mykop.mydomain.com:7080/saas

KIUWAN_WEBS
ERVER_PROTO
COL

[http | https
]

If HTTPS=OFF, specify http

IF HTTPS=ON, specify https

KIUWAN_WEBS
ERVER_HOST
KIUWAN_WEBS
ERVER_PORT

mykop.
mydomain.
com
80

External KOP hostname (, see Fully Qualified Domain Name
note below) and number to access KOP.port

These variables will be used to build Kiuwan URL.

Example (with default values):

http://mykop.mydomain.com:80/saas

Fully Qualified Domain Name (FQDN): https://en.wikipedia.org
/wiki/Fully_qualified_domain_name

KIUWAN_HOST
KIUWAN_PORT

my_internal
_kop.
mydomain.
com
7080

Internal KOP hostname (, see note Fully Qualified Domain Name
below) and number to access KOP.port

These variables will be used to build an internal Kiuwan URL.

Example (with default values):

http://my_internal_kop.mydomain.com:7080/saas

Fully Qualified Domain Name (FQDN): https://en.wikipedia.org
/wiki/Fully_qualified_domain_name

KIUWAN_HOST must be different from
KIUWAN_WEBSERVER_HOST.

KIUWAN_PORT must be different from
KIUWAN_WEBSERVER_PORT only if the frontend server and
KOP app server execute in the same machine.

KIUWAN_APPSE
RVER_AJP_PORT

defaults to
7009

Port that the front-end server will use to communicate with KOP
app server through AJP

KOP Configuration properties

PropertyName Default
value

Meaning

SysAdmin configuration

KIUWAN_DOCKER_IMA
GE

Name of the docker image (repository name) to be built

DIR_PERSISTENT_VOL
UME

/Datavol The root directory of docker server where the container
volume will be bound

KIUWAN_VOL /kiuwan_v
ol

Directory of the container where KOP will be installed.

EXTERNAL_PORT_TO_
MAP_MYSQL_INTERNA
L_PORT

3306 Docker server port to access container's MySQL

you can leave it to standard 3306 if MySQL is not
running in the server host

EXTERNAL_PORT_TO_
MAP_SSH_PORT

2222 Docker server port to access container through SSH

must be different to standard 22 because most probably
SHH:22 will be running in the server host

MONGODB_START false Depending on your Kiuwan On-Premises purchased license:

true: Start MongoDB (license with Architecture included)
false: Don´t start MongoDB (license without
Architecture)

Proxy settings

https://en.wikipedia.org/wiki/Fully_qualified_domain_name
https://en.wikipedia.org/wiki/Fully_qualified_domain_name
https://en.wikipedia.org/wiki/Fully_qualified_domain_name
https://en.wikipedia.org/wiki/Fully_qualified_domain_name

USE_PROXY false
false: don´t use proxy to build container
true: use proxy to build container

HOST_PROXY
PORT_PROXY

Hostname (or IP address) and port number of proxy used for
Intenet connectivity during the image building process

USER_PROXY
PWD_PROXY

Username and password to connect Proxy.

NO_PROXY localhost,
127.*

A comma-separated list of destinations that will not be
accessed through the proxy. Do not use quotes (single or
double) to enclose these values.

Important: KIUWAN_HOST value is automatically appended

KOP users

KIUWAN_USER
KIUWAN_GROUP

kiuwan
kiuwan

System user/group for KOP installation and execution

MYSQL_ROOT_PWD root Password for the root user of KOP's MySQL instance

KIUWAN_MYSQL_USER
KIUWAN_MYSQL_USER
PWD

kiuwan
kiuwan

Username and password used by KOP to access MySQL
database

SSH_ROOT_PWD password Password for root user (SSH) of Kiuwan Container

KIUWAN_EMAIL_ADMIN
_ACCOUNT

The email address of userkiuwanadmin

this email address will be used to send notifications to ki
 useruwanadmin

KOP e-mail (SMTP) configuration

KIUWAN_SMTP_HOST
KIUWAN_SMTP_PORT

SMTP host and port

KIUWAN_SMTP_USER_
ACCOUNT
KIUWAN_SMTP_USER_
PASSWORD

SMTP account: username and password

KIUWAN_EMAIL_USER_
ACCOUNT

Sender email address for KOP email notifications

Advanced configuration (WildFly, MySQL, Redis, etc)

INNODB_BUFFER_POO
L_SIZE

 2G

APPS_JVMMAXMEMORY 3G Max amount of heap memory to be used by WidlFly

KIUWAN_REDIS_MAXM
EMORY

 2gb Max memory limit to be used by Redis server (https://redis.io
)/topics/config

You can visit the for additional configuration parameters.Advanced Configuration

Step 3: Build the Kiuwan Docker image

https://redis.io/topics/config
https://redis.io/topics/config

After the image creation, you will be able to list the images in your docker server and identify your kiuwan
image by issuing the next command:

 docker images

Step 3.1 (Optional) Moving the image to another server host

After creating the image, if you want to move it to another host server you first must save it to a tarball by
executing:

 docker save kop:v1.2 > kop_v12_saved_image.tar

Then, transfer the image tarball to the destination host and load it by executing:
 docker load --input kop_v12_saved_image.tar

Step 4: Executing the Kiuwan Docker container

Step 4.1 Execution in debug mode (only sshd)

Just in case you are running with problems while executing the Kiuwan container, you can run it in debug
mode.

1.
2.

After configuration, you will .build the Kiuwan docker image

IMPORTANT: Please be sure you have already installed KOP licenses, otherwise the docker
image will not be built.

To build the docker image:

 cd $KOP_INSTDIR/master.YYYYMMDDHHMM.buildnumber

 ./create_and_init_kop.sh

This step requires Internet connectivity.

If your installation uses a , you should have previously configured the proxy settings.proxy

In case you need to execute the Kiuwan container in a host server without Internet
connectivity:

Build the image in a connected server host
Save the image, transfer it to the target host server and then load it and execute it
(as further described)

After executing docker image build script (./), two scripts are create_and_init_kop.sh
generated based on configuration filesettings.custom

 run_kop.sh

Script to start the Kiuwan docker container and make KOP fully available and
accessible to users.

 run_init_kop.sh

Script to initialize the Kiuwan docker container (i.e. resetting completely the KOP
installation to factory defaults) without to create a new image. This script will
remove any existing data of KOP installation (for example, all the database
contents will be deleted).

IMPORTANT:

These scripts are based on settings.custom values at the moment of building the
docker image.
If you later change settings.custom file, the new configuration values will not be
applied until a new image is built (and new scripts will be generated)

You can by issuing the following command:stop the Kiuwan container

 docker stop <my_container_name>

1.
2.

3.

1.
2.

3.
4.

5.

This means to apply the configuration but not starting the services, allowing you to access the container
through ssh.

Step 5: Making Kiuwan On-Premises run on HTTPS (Optional)

 If you need to execute Kiwuan On-Premises over HTTPS protocol, please follow the next steps.

Step 5.1 Create your KOP SSL configuration file

SSL configuration is currently done by creating a configuration file () within directory ssl.custom ssl

There's a file () you can use as a template to configure your settings.ssl.tpl

cd ssl
Create ssl.custom file by copying the template file

cp ssl.tpl ssl.custom
Edit the properties of ssl.custom file and change default values

Property Name Default value Meaning

Commons

SSL_O Your Organization

SSL_LOCALITY Your Locality

SSL_STATE Your State

SSL_COUNTRY Your Country

SSL_OU Your Organization Unit

Keystore

SSL_KS_PWD Password for Keystore that will be created

Aliases

SSL_ALIAS wildfly Alias of the Certificate to be created.

HTTPS_PORT 8443 HTTPS port

Step 5.2 Create the Private key and Certificate Signing Request (CSR) for your
server

Within directory execute the script ssl CreateKey_and_ReqCSR.sh
This script generates the CSR file under ssl/certs

That file is named , according to <yourhost.yourdomain.com>.csr $KIUWAN_HOST
configuration property

Send CSR file to your CA (Certificate Authority)
CA will send back to you two files:

CA's Certificate file (IMPORTANT: rename it to)ca.crt
Your host's Certificate file: for example yourhost.yourdomain.com.crt

Copy received files to directoryssl/certs

Step 5.3 Create the Keystore and switch from HTTP to HTTPS

After the container is built, you can execute (run) the Kiuwan container by in debug mode
issuing the following command:

 docker run --rm --name <my_container_name> \

 -h <my_container_host_name> \

 -v <server_host_mount_dir:container_mount_dir> \

 -p <ssh_port_ext>:22 \

 -d \

 <image_name:version>

1.

2.

3.

1.
2.
3.
4.

1.

1.
2.
3.

Within ssl directory execute the script TransferFilesToContainer.sh
This script transfers your server's certificate, your private key and CA's certificate to
KOP container
Also, it transfers the script templates that will be used to create the keystore and to
change the configuration from http to https

Within ssl directory execute the script run_create_Keystore.sh

This script executes (into the container) the script create_Keystore.sh (created from
template create_Keystore.tpl)

Within ssl directory execute the script run_change_ToHTTPS.sh
This script stops wildfly service and executes the script change_ToHTTPS.sh (created
from template change_ToHTTPS.tpl), this script will create files with .rollback extension
of modified ones
Then, it starts wildfly service

Step 5.4 Just in case you are using your own CA, make it valid to your browsers
and Java

If the certificate is signed by , the browsers will not recognize it as a your own Certification Authority
valid CA and you will get an error messages such as:

Your connection is not private
Attackers might be trying to steal your information from youthost.yourdomain.com (for example,
passwords, messages, or credit cards).

NET::ERR_CERT_AUTHORITY_INVALID

To solve this issue, you have to : import your CA Certificate into your browser

In Chrome: Configuration >> Settings >> Advanced >> Manage certificates >> Import (ca.crt)
into "Trusted root certification entity store"

Additionally, you must (cacerts)import your CA Certificate into Java's Keystore

Log in to the KOP container and execute the next commands:

cd /opt/jdk*/jre/lib/security/
supervisorctl stop wildfly
cp cacerts cacerts.bck.original
keytool -import -noprompt -alias root -keystore cacerts -trustcacerts -file / /configura<kiuwan_vol>
tions/ssl/ca.crt -storepass changeitsupervisorctl start wildfly

NOTE: change to the value of (as configured in <kiuwan_vol> $KIUWAN_VOL settings.
) custom

o keep them after rebooting Then, log in to your docker server and make above changes persistent (i.e. t
the container):

docker commit <kop docker name> <kop docker image>
NOTE: run 'docker ps' to get NAMES and IMAGE values of your KOP container

Rollback to HTTP
In case you need to , follow the next steps:change back to HTTP

Log in to your docker server and go to your installation directory ()$KOP_INSTDIR
cd ssl
execute the script run_rollback_HTTPS.sh

After execution, KOP will come back to configuration previous to the execution of run_change_ToHTTPS.
sh script.

Step 6: Accessing Kiuwan On-Premises

KOP URL

Once Kiuwan On-Premises container is running, you can access it from a browser in the following URL:

http[s]://<KIUWAN_HOST>:<KIUWAN_PORT>/saas

After the conversion to HTTPS, please download a new version of the Kiuwan Local Analyzer
from your KOP site.

 must be done in the as well as in Importing CA Cert into Java's Keystore KOP Container a
.ny client machine using Kiuwan for Developers (K4D) plugin

1.
a.

2.
3.

a.

b.

4.
a.

1.

2.

3.

where KIUWAN_HOST and KIUWAN_PORT match the values of those properties as configured in settin
gs.custom

KOP REST-API URL

http[s]://<KIUWAN_HOST>:<KIUWAN_PORT>/saas/rest/v1

KOP built-in users

KOP comes with the following built-in users.

kiuwanadmin (password: kiuwanadmin)
access to Kiuwan "functional" administration modules such as Users, Applications and
Model Management (see)Admin Guide
log in as kiuwanadmin to create users of your KOP instance

sysadmin (password: sysadmin)
log in as sysadmin to access functionalities related to monitoring and tuning KOP
execution
the sysadmin will give you access KOP sysconsole

Upgrading your KOP installation

To maintain your KOP installation up-to-date to new features, bugfixes, etc, you will have to upgrade your
KOP installation.

Log in to Console as SysAdmin and check the status of your KOP installation:

The following pages describe the upgrading Installation procedures of releases of KOP, you can obtain
the latest version .here

Before starting the upgrade process, it's always advisable to make a backup of the current KOP
.installation

Stop the container
Docker stop <$KIUWAN_HOST>

Make a backup of MySQL (optional, step #3 also makes a backup copy of MySQL)
From the docker server, make a copy of permanent volume ($DIR_PERSISTENT_VOLUME
setting).

cp -rpf <$DIR_PERSISTENT_VOLUME
/$KIUWAN_HOST> <$DIR_PERSISTENT_VOLUME/$KIUWAN_HOST>.bck
Substitute DIR_PERSISTENT_VOLUME and KIUWAN_HOST with values configured
at file.settings.custom

Start the container
run_kop.sh

A new release is distributed as a new consisting of a tarball gz file (KOP Installation Package, docker-
) containing all the new .for-kiuwan.gz kiuwan docker files

Copy the new distribution tarball to your host server’s updates directory ($KOP_INSTDIR
)/updates/download

Uncompress the distribution tarball
tar xvzf docker-for-kiuwan.tar.gz
A direc$KOP_INSTDIR/updates/download/master.YYYYMMDDHHMM.buildnumber
tory will be created

Change directory to $KOP_INSTDIR/updates/bin

To upgrade Kiuwan Core AND Kiuwan Clients:

cd to $KOP_INSTDIR/updates/bin
Execute the script ./updateKiuwanLauncher.sh

This script makes all the work to upgrade your current KOP app instance to the new
one (CORE and CLIENTES will be updated)

https://www.kiuwan.com/docs/display/K5/Admin+Guide
https://www.kiuwan.com/pub/kw4docker/docker-for-kiuwan.tar.gz

To upgrade ONLY Kiuwan Clients:

cd to $KOP_INSTDIR/updates/bin
Execute the script ./updateClientsLauncher.sh

This script makes new KLA and K4D ready to be downloadable by KOP client users.

Advanced Configuration

As above specified, the file allows you to specify most (but not all) configuration settings.custom
parameters.

Component PropertyName
(=default value)

Meaning

TimeZone KIUWAN_TIMEZONE
='UTC'

Timezone to be used by the Kiuwan application.

WildFly APPS_JVMMINMEM
ORY=512M
APPS_JVMMAXMEM

=3GORY

Max and Min amount of to be used by heap memory
WidlFly.

APPS_JVMMINMETA
SIZE=96M
APPS_JVMMAXMET

=512MASIZE

Max and min ammount of to be used by perm gen memory
WildFly

(see)https://issues.jboss.org/browse/WFLY-5955

MySQL innodb_buffer_pool_
size=2G

=4Mjoin_buffer_size
=1query_cache_limit

6M
=16Mread_buffer_size

read_rnd_buffer_size
=4M

=4Msort_buffer_size
=1max_connections

024
=16Mtmp_table_size

max_allowed_packet
=64M

Default MySQL parameters used to create database
instance.

(see for https://dev.mysql.com/doc/refman/5.6/en/
reference) redis

Redis KIUWAN_REDIS_MA
XCLIENTS=100
KIUWAN_REDIS_MA

=2gbXMEMORY

Maximum number of Redis clients that could be handled
simultaneously ()https://redis.io/topics/clients

Max memory limit to be used by Redis server (https://redis.io
)/topics/config

Appendix 1 - Configuring Apache as FrontEnd WebServer to KOP

If you choose the Apache web server as the front-end for your Kiuwan On-Premises installation, you may
follow the following configuration examples and/or check your current configuration agrees with the
suggested examples.

HTTP Protocol

For this kind of access you just need to add a virtual host and configure how Apache will talk to Kiuwan.

Before this make sure your Apache installation has these modules available:

mod_proxy
mod_proxy_ajp (if you want ajp communication between front and backend servers)
mod_proxy_http (if you want ajp communication between front and backend servers)
mod_proxy_wstunnel

There are some additional configuration parameters that you can configure at (locatDockerfile
ed in your)$KOP_INSTDIR

The configuration is done at settings.custom file always take precedence over configuration
done at Dockerfile.

https://issues.jboss.org/browse/WFLY-5955
https://dev.mysql.com/doc/refman/5.6/en/
https://redis.io/topics/clients
https://redis.io/topics/config
https://redis.io/topics/config

To add a virtual host for Kiuwan On-Premises, you can add a file in your Apache installation folder (i.e.
/etc/apache2/sites-available/kop.conf) with the following content. Make sure you replace the variables put
inside brackets for those you previously configured when installing your Kiuwan On-Premises instance
and a protocol is set (choose between ajp or http) in the ProxyPass directives:

<VirtualHost *:[KIUWAN_WEBSERVER_PORT]>
 ServerName [KIUWAN_WEBSERVER_HOST]
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

 LogLevel debug
 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 ProxyRequests Off
 ProxyPreserveHost On
 <Proxy *>
 Require all granted
 </Proxy>

 ProxyPass / [ajp|http]://[KIUWAN_HOST]:
[KIUWAN_PORT]/
 ProxyPassReverse / [ajp|http]://[KIUWAN_HOST]:
[KIUWAN_PORT]/

 <Location />
 Require all granted
 </Location>
</VirtualHost>

HTTPS Protocol

For this kind of access you will need:

A virtual host configured in Apache will talk to Kiuwan (see below).
Open an https port in Apache (usually 443).
A certificate for the exposed hostname (KIUWAN_WEBSERVER_HOST).

Before this make sure your Apache installation has these modules available:

mod_proxy
mod_proxy_ajp (if you want ajp communication between front and backend servers)
mod_proxy_http (if you want ajp communication between front and backend servers)
mod_proxy_wstunnel
mod_rewrite
mod_ssl

Please make sure you generate a certificate for your Kiuwan hostname and it is signed by a trusted CA
inside your organization. At this point you need three files:

[KIUWAN_WEBSERVER_HOST].crt: the certificate for your kiuwan host.
[KIUWAN_WEBSERVER_HOST].key: the private key.
ca.crt: the trusted CA certificate.

Refer to PremisesInstallationGuide-Step5.2CreatethePrivatekeyandCertificateSigningRequest(CSR)
 foryourserver for more information on how to create and install certificates.

Please note that you must install the CA certificate on the docker container before proceeding.

Place the previous files at these locations (we put here the default locations for these files, but it is up to
you to change these paths):

/etc/ssl/certs/[KIUWAN_WEBSERVER_HOST].crt
/etc/ssl/private/[KIUWAN_WEBSERVER_HOST].key
/etc/apache2/ssl.crt/ca.crt

Now you should tell Apache to listen on the configured https port, editing the ports.conf file (i.e. /etc
/apache2/ports.conf):

Listen [KIUWAN_WEBSERVER_PORT]

To add a virtual host for Kiuwan On-Premises, you can add a file in your Apache installation folder (i.e.
/etc/apache2/sites-available/kop.conf) with the following content. Make sure you replace the variables put
inside brackets for those you previously configured when installing your Kiuwan On-Premises instance
and a protocol is set (choose between ajp or http) in the ProxyPass directives:

<VirtualHost *:[KIUWAN_WEBSERVER_PORT]>
 ServerName [KIUWAN_WEBSERVER_HOST]
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

 SSLEngine on
 SSLCertificateFile /etc/ssl/certs/[KIUWAN_WEBSERVER_HOST].crt
 SSLCertificateKeyFile /etc/ssl/private/[KIUWAN_WEBSERVER_HOST].key
 SSLCertificateChainFile /etc/apache2/ssl.crt/ca.crt

 LogLevel debug
 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 ProxyRequests Off
 ProxyPreserveHost On
 <Proxy *>
 Require all granted
 </Proxy>

 ProxyPass / [ajp|http]://[KIUWAN_HOST]:
[KIUWAN_PORT]/
 ProxyPassReverse / [ajp|http]://[KIUWAN_HOST]:
[KIUWAN_PORT]/

 <Location />
 Require all granted
 </Location>

 # Redirect http traffic to https
 RewriteEngine On
 RewriteCond %{HTTPS} off
 RewriteRule ^.*$ https://%{SERVER_NAME}%{REQUEST_URI} [R,L]

</VirtualHost>

	Kiuwan On-Premises Monolithic Installation Guide

