
[2018-10-30] Change Log

New version of CQM, Kiuwan Engine and Kiuwan Insights
1. Kiuwan CQM and Engine

Support for .Net Xamarin platform
New Swift security rules
Performance Optimization Guide

2. Insights - Component Dependency Tree

New version of CQM, Kiuwan Engine and Kiuwan Insights

1. Kiuwan CQM and Engine

Support for .Net Xamarin platform

This new Kiuwan Engine provides support for platform (Microsoft framework for developing multi-device mobile apps in C# for Android, iOS, .NET Xamarin
MacOS and Windows mobile platforms).

Kiuwan engine is now aware of security-relevant items in , providing mappings for input elements in user-defined interfaces (via XAML in Xamarin APIs
Xamarin.Forms) so they are properly considered as user-controlled input.

New Swift security rules

OPT.SWIFT.SECURITY.PasteboardCachingLeak

1.

2.

 of this release areMain features :

Kiuwan CQM (v1.2.20) and Engine
Support for platform.Net Xamarin
Increased support for in ()security Swift 18 new security rules
Performance Optimization Guide
 Insights - new Component Dependency Tree

A has been released that incorporate as detailed below).new version of CQM (new rules

CQM is the default Model (i.e. a concrete set of active and pre-configured rules):

If you are using , and will be applied to new analyses.CQM new rules will automatically become active
If you are using your own but (in case custom model, your model remains unchaged, you can modify it and activate the new rules
you want to be applied to your code).

You can find new rules by comparing this release of CQM against previous version. A detailed description of the behavior of these new rules is
available in rule’s description.

A has been released that incorporates new version of Kiuwan Engine bug fixes, performance and reliability improvements in rules and
.parsers

Kiuwan Engine is the binary code executed when an analysis is run.

 If the engine is not blocked in your Kiuwan account, to the last version of Kiuwan Engine the engine will upgrade automatically
once a new analysis is run
If the engine is blocked, your kiuwan .engine will not be modified

https://developer.xamarin.com/api/

OPT.SWIFT.SECURITY.PasswordInConfigurationFile
OPT.SWIFT.SECURITY.PotentialInfiniteLoop
OPT.SWIFT.SECURITY.URLSchemeHijacking
OPT.SWIFT.SECURITY.HardcodedUsernamePassword
OPT.SWIFT.SECURITY.PlaintextStorageInACookieRule
OPT.SWIFT.SECURITY.SerializableClassContainingSensitiveData
OPT.SWIFT.SECURITY.ThirdPartyKeyboardAllowed
OPT.SWIFT.SECURITY.UncheckedInputInLoopCondition
OPT.SWIFT.SECURITY.ExecutionAfterRedirect
OPT.SWIFT.SECURITY.SensitiveSQL
OPT.SWIFT.SECURITY.SensitiveNoSQL
OPT.SWIFT.SECURITY.InsecureTemporaryFile
OPT.SWIFT.SECURITY.ConnectionStringParameterPollution
OPT.SWIFT.SECURITY.SensitiveCoreData
OPT.SWIFT.SECURITY.PasswordInCommentRule
OPT.SWIFT.SECURITY.HttpParameterPollutionRule
OPT.SWIFT.SECURITY.NoSQLInjection

Performance Optimization Guide

If you need to optimize the performance of your local analyses, please read , a practical how-to Performance Optimization Guide guide to optimize the
. performance and memory consumption of Kiuwan local Analyzer

2. Insights - Component Dependency Tree

Kiuwan incorporates a new view to better understand the external dependencies of your app. Insights

Insights' let's you now to select a or view of the external components of your application. Component tab Flat Tree

By selecting view, you will be able to see the (as before), but Flat full list of external dependencies opening a component you will see the " " of the source
, i.e. what's the path that Insights has followed to discover your component.dependency

This Flat view will help you to identify the origin (source) of your dependencies.

For example, in this image you can view that the discovered component () has its origin in a dependency within your ch.qos.logback:logback-classic pom.
 file which, in turn, contains other transitive dependencies (discovered in Maven repository) until the selected component.xml

The Flat view, then, displays the whole list of components, directly or indirectly used by your application.

https://www.kiuwan.com/docs/display/K5/Performance+Optimization+Guide

Butm what if you need to know your "direct" dependencies? That is, to know what components are directly used (called) by your application, and be able to
drill-down to view the components indirectly used by your application.

The view allows to view your . Tree " " dependencies as well as the " " dependenciesdirect indirect

The example below shows how the directly-used component " " (Level 1) uses directly other components org.springframework.boot:spring-boot-starter-web
(level 2) which, in turn, uses other components (Level 3), and so on.

	[2018-10-30] Change Log

