
What is Injection
This page describes in-depth what an injection attack is.

Contents:

Injection
Tainted Data Flow
Injection Prevention Rules

Injection types

Injection

Injection is a broad concept that covers many different security risks.

What’s common to all of them is that interpreters running in an app’s background can be
.intentionally cheated to run code that can be exploited by an attacker

Depending on the underlying interpreter, injection flaws can occur on SQL-engines, LDAP engines, OS
command-interpreters, XML interpreters, etc.

Tainted Data Flow

A common injection root cause is to send (potentially tainted) data to an interpreter as part of untrusted
a command or query.

Source locations are those places in the code from where data comes in, that can be potentially
controlled by the user (or the environment) and must consequently be presumably considered as tainted
(as they may be used to build injection attacks).

User input should always be considered as (you will have no way to know if a user is untrusted
an attacker or a normal app user).

Sink locations are those places where consumed data must be .untainted

Data used by an interpreter (a sink) must always be (must not be controlled by a trusted
threat), i.e. sensitive data sinks rely on trusted () datauntainted

Your app contains an (an injection vulnerability) wherever a data flow exists where any injection point
sink consumes input data which is not being properly neutralized. Kiuwan scans your source code to find
any injection point:

Injection Prevention Rules

As in any other security matter, there is not a unique protection mechanism and the best approach is
combining more than one.

OWASP Definition of Injection

OWASP defines Injection flaws as follows:

A1:2017 – Injection

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is
sent to an interpreter as part of a command or query. The attacker’s hostile data can trick the
interpreter into executing unintended commands or accessing data without proper
authorization.

For all possible sinks, prove that tainted data will never be used where untainted data is
expected.

This is a general approach to prevent injection flaws. But, depending on the interpreter, there can be
further prevention possibilities.

When Kiuwan scans your source code, all the vulnerabilities of the same type are grouped under a
Kiuwan rule, indicating how many files are affected (and where), how many vulnerabilities were found,
and providing specific remediation clues based on the specifics of the programming language or
interpreter being used.

What follows is a description of the main types of injection attacks, providing references to further
detailed documentation and the detection coverage provided by Kiuwan.

Injection types

This list is continuously growing, if you miss any programming language, please contact Kiuwan Support.

It follows an explanation of the (referred by their CWE ID#). You can visit most common injection types
 for further information on every injection type.https://cwe.mitre.org/

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
')Injection

CWE-90: Improper Neutralization of Special Elements used in an LDAP Query (')LDAP Injection'
CWE-91: (aka Blind XPath Injection)XML Injection
CWE-643: Improper Neutralization of Data within XPath Expressions ()'XPath Injection'
CWE-611: Improper Restriction of XML External Entity Reference ()'XXE'
CWE-917: Improper Neutralization of Special Elements used in an Expression Language
Statement ()'Expression Language Injection'
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS

)Command Injection'

Nevertheless, although we will concentrate on this subset, there are many other injection attacks also
covered by Kiuwan.

Below you can find a list of injection attacks not covered in this paper but controlled by Kiuwan.

CWE-15: External Control of System or Configuration Setting
CWE-20: Improper Input Validation
CWE-88: Argument Injection or Modification
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting')
CWE-564: SQL Injection: Hibernate
CWE-345: Insufficient Verification of Data Authenticity
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection')
CWE-94: Improper Control of Generation of Code ('Code Injection')
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval
Injection')
CWE-114: Process Control
CWE-917: Improper Neutralization of Special Elements used in an Expression
Language Statement ('Expression Language Injection')
CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP
Response Splitting')
CWE-494: Download of Code Without Integrity Check
CWE-117: Improper Output

1.

2.

To prevent Injection flaws we can consider the following complementary approaches:

The first line of defense consists of (i.e an using the interpreter through a safe API
API that avoids the use of the interpreter entirely or provides a parameterized
interface).

Even so, be careful of APIs, such as stored procedures that are
parameterized, but can still introduce injection under the hood.

If you cannot use a safe API (or even using it), you should always perform
. adequate input validation

By input validation, we mean accepting only what is known to be good
(whitelist), rejecting what is known to be bad (backlist) and escaping special
characters using the specific escape syntax for the interpreter.

Kiuwan provides out-of-the-box rules to detect Injection points in the following
programming languages:

Abap, ASP.NET, C/C++, C#, Cobol, Java, JavaScript, JSP, Objective-C, Oracle
Forms, PHP, PL/SQL, Python, RPG IV, Swift and Transact-SQL

https://cwe.mitre.org/

Neutralization for Logs
CWE-134: Use of Externally-Controlled Format String
CWE-159: Failure to Sanitize Special Element
CWE-180: Incorrect Behavior Order: Validate Before Canonicalize
CWE-183: Permissive Whitelist
CWE-185: Incorrect Regular Expression
CWE-235: Improper Handling of Extra Parameters
CWE-346: Origin Validation Error
CWE-352: Cross-Site Request Forgery (CSRF)
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe
Reflection')
CWE-472: External Control of Assumed-Immutable Web Parameter
CWE-473: PHP External Variable Modification
CWE-501: Trust Boundary Violation
CWE-502: Deserialization of Untrusted Data
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')
CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity
Expansion')
CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery
Injection')
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object
Attributes
CWE-918: Server-Side Request Forgery (SSRF)

	What is Injection

