
CWE-78 : OS Command Injection
This guide explains OS Command injection in more detail.

Contents:

OS Command Injection (CWE-78)
OS Command Injection (CWE-78) coverage by Kiuwan

OS Command Injection (CWE-78)

OS Command injection is, therefore, an attack in which the goal is the execution of arbitrary commands
on the host operating system.

These attacks are possible when an application passes unsafe user-supplied data (forms, cookies, HTTP
headers, etc.) to a system shell, which is usually executed with the privileges of the vulnerable
application.

The impact of command injection attacks ranges from loss of data confidentiality and integrity (such as
accessing resources without proper privileges) to unauthorized remote access to the system that hosts
the vulnerable application (being able to perform malicious actions such as delete files, add new users,
etc.).

Unlike other injection attacks based on specific languages, command injection attacks can occur in any
OS (Windows and Unix-based) and affect any programming language that might call OS commands (C
/C++, Java, PHP, etc.).

The first remediation should go in the direction of using API calls instead of external commands (if
to ensure that the application runs under a non-privileged account with rights for the intended possible) or

commands.

Anyway, the main reason that an application is vulnerable to command injection attacks is due to
incorrect or insufficient input data validation by the application. Therefore, the sanitization of user input
should always be done.

In the case of a web app, the URL and form data needs to be sanitized for invalid characters. A blacklist
of characters is an option, but it may be difficult to think of all of the characters to validate against. A
better approach would be based on creating a whitelist containing only allowable characters or
command list to validate the user input.

Let’s have a look at this very basic example. As you can see, user data is collected through program
arguments and directly used to construct an OS command.

public class commandInjection {
 public static void main(String[] args) throws InterruptedException,
IOException {
 String dir = args[0];
 Runtime rt = Runtime.getRuntime();

 Process proc = rt.exec("cmd.exe /C dir " + dir);
 int result = proc.waitFor();
 if (result != 0) {
 System.out.println("process error: " + result);
 }
 InputStream in = (result == 0) ? proc.getInputStream() :
 proc.getErrorStream();
 int c;
 while ((c = in.read()) != -1) {
 System.out.print((char) c);
 }
 }
}

It’s easy to imagine the result of running this program with the next arguments:

CWE-78 describes as follows:OS Command Injection

“The software constructs all or part of an using externally-influenced input from OS command
an upstream component, but it does not neutralize or incorrectly neutralizes special elements
that could modify the intended OS command when it is sent to a downstream component.”

https://www.kiuwan.com/docs/display/K5/CWE-78+%3A+OS+Command+Injection#CWE78:OSCommandInjection-OSCommandInjection(CWE-78)
https://www.kiuwan.com/docs/display/K5/CWE-78+%3A+OS+Command+Injection#CWE78:OSCommandInjection-OSCommandInjection(CWE-78)coveragebyKiuwan

"c:\tmp > dir.txt & type c:\Windows\system.ini"

In this example, the program will display the system.ini configuration file, but the most important thing is
that the attacker gains full control on what to do in the attacked system. It’s an open door, a smart hacker
will take full advantage of it, no doubt about it.

If you use Kiuwan for Developers, you will be automatically alerted of the vulnerability, with an indication
of the sink and the source of the injection.

As said above, a check of user data against a whitelist containing only allowed characters (or command
list) will remediate the vulnerability.

if (Pattern.matches("[0-9A-Za-z@.]+", dir)) {
 Process proc = rt.exec("cmd.exe /C dir " + dir);
}

OS Command Injection (CWE-78) coverage by Kiuwan

Kiuwan incorporates the following rules for OS Command Injection (CWE-78) for the following
languages.

To obtain detailed information on functionality, coverage, parameterization, remediation, example codes,
etc., follow the same steps as described in SQL Injection.

Language Rule code

Abap OPT.ABAP.SEC.CommandInjection

C OPT.C.CERTC.ENV04

 OPT.C.CERTC.STR02

C# OPT.CSHARP.CommandInjection

C++ OPT.CPP.CERTC.ENV04

 OPT.CPP.CERTC.STR02

Cobol OPT.COBOL.SEC.OSCommandInjection

Java OPT.JAVA.SEC_JAVA.CommandInjectionRule

Javascript OPT.JAVASCRIPT.CommandInjection

In Kiuwan, you can search rules covering OS Command Injection (CWE-78) filtering by

Vulnerability Type = , and/orInjection
CWE tag = CWE:78

https://www.kiuwan.com/docs/display/K5/CWE-89%3A+SQL+Injection#CWE89:SQLInjection-89:SQLInjection-SQLinjection(CWE-89)coveragebyKiuwan

Objective-C OPT.OBJECTIVEC.DoNotUseSystem

PHP OPT.PHP.CommandInjection

Python OPT.PYTHON.SECURITY.CommandInjection

RPG IV OPT.RPG4.SEC.OSCommandInjection

Swift OPT.SWIFT.SECURITY.CommandInjection

	CWE-78 : OS Command Injection

