
Custom Neutralizations

Introduction
Tainted Flow Analysis
Data Neutralization Model
Neutralization Routines (a.k.a Sanitizers)

Specifying custom neutralization routines
Locations and precedence
Creating a custom “Library” of neutralization routines
Examples

Example 1 (Java)
Example 2 (Java)
Example 3 (Java)

Neutralization elements
argpos
kind
resource

Reference

Introduction

Tainted Flow Analysis

The root cause of many security breaches is trusting unvalidated input. This could be:

Input from the user, which could be considered as (possibly controlled by an adversary), tainted
i.e user is considered as an untrusted source
Data, assuming it is (must not be controlled by an adversary), i.e. sensitive data sinks untainted
rely on trusted (untainted) data

The goal of is to detect tainted data flows:Tainted Flow Analysis

Prove, for all possible sinks, that tainted data will never be used where untainted data is expected.

When inferring flows from an untainted sink to a tainted source, Kiuwan can detect if any well-known sanit
 is used, dropping those flows and thus avoiding to raise false vulnerabilities.izer

Kiuwan contains a built-in library of sanitizers for every supported programming language and framework.

These sanitizers are commonly used directly by programmers or by frameworks. And Kiuwan detects
their use.

Read more here Understanding Data-Flow Vulnerabilities

Data Neutralization Model

Complex that accept string data that may hold commands or instructions need neutralization subsystems
of inputs targeted to them.

If untrusted input entering the subsystem may result in unexpected execution of commands/actions, an
injection security flaw exists. Examples of such subsystems that are candidates for injection attacks are:

The operating system command interpreter
Data repository with the SQL engine

Source locations are those code places from where data comes in, that can be potentially
controlled by the user (or the environment) and must consequently be presumably considered
as tainted (it may be used to build injection attacks).

Sink locations are those code places where consumed data must not be tainted.

Kiuwan implements Tainted Flow Analysis by inferring flows in the source code of your
application:

What sinks are reached by what sources
If any flows are illegal, i.e., whether a tainted source may flow to an untainted sink
without going across a sanitizer

https://www.kiuwan.com/docs/display/K5/Understanding+Data-Flow+Vulnerabilities

XML parser
XPath / XQuery evaluator
LDAP directory service API
Script engines
Regexp compilers (e.g. the pcre_replace() PHP function with /e pattern modifier)

 The first defense line against application attacks is adequate .input validation

Should be , “accept only which is known to be good” (), not negative, “reject positive whitelist
what is known to be bad” (blacklist).
Sometimes is a good thing (e.g. against XSS; but less against SQLi and other output escaping
attacks)

Canonicalization / Normalization
Canonicalization is the process of lossless reduction of input to its equivalent simplest
known form (for example, replacing .. and . in a pathname to produce canonicalized
pathname, Unicode canonical equivalence…).
Normalization is the process of lossy conversión of input data to the simplest form (e.g.
converting a text input into one value from a fixed set, removing accents, removing
whitespace, stop words and punctuation chars, lower-/upper-casing…).

Sanitization
Ensuring that data conforms to the requirements of the subsystem to which it is
passed, including security requirements related to data leakage or sensitive data
exposure across the trust boundary. This may include the removal of unwanted
characters, escaping metacharacters, etc.

Validation
Ensuring that input falls within the expected domain of valid program input: type
/numeric range requirements, input invariants…

Kiuwan contains a built-in library of sanitizers for every supported programming language and
framework. These sanitizers are commonly used directly by programmers or by frameworks. And Kiuwan
detects their usage.

But if you are using your sanitizers, Kiuwan could not recognize them as such, detecting false “tainted
data flow”. In this case, you should let Kiuwan be aware of them.

The goal of this section is to teach you how to incorporate custom sanitizers to the Kiuwan built-in
.library

During the next section, we will use the terms “sanitizers” and “neutralization routines” as synonyms.

Neutralization Routines (a.k.a Sanitizers)

This documentation is not related to how to build custom neutralization routines, but how to add your own
custom neutralization routines to Kiuwan.

The root cause of most web security flaws:

Too much trust in external input (but HTTP request msg could be change ad-libitum
by the hacker): headers (incl. cookies), request URL, body (incl. hidden fields).
No adequate input validation / output sanitization / canonicalization – normalization.

Good practice says: “ ”.filter on input, escape on output

A (or) is understood as any piece of code that can assure Neutralization Routine Sanitizer
that any tainted data got as input produces untainted as output.

The process consists of:

First, let Kiuwan know your routine
Depending on the programming language you are analyzing, the so-called “routine”
can be a function, a method of a class, etc.

Second, let Kiuwan know that it’s a neutralization
Kiuwan provides some ways to define your routine (we will see it later) but, regardless
of it, you need to indicate that routine as “neutralization”.

Next, for instruction purposes, we will follow these steps using Java as the programming language.
Differences with other programming languages will be further detailed.

Specifying custom neutralization routines

Locations and precedence

Neutralization routines can be configured at different scopes

Single-analysis,
Application-specific and
System-wide.

Depending on the location of the XML file, precedence and scope will change.

Precedence and scope of configurations are as follows:

Single-Analysis
Neutralizations can apply only to a unique analysis.
In this case, the XML file should be located at:

[analysis_base_dir]/libraries/[technology]

Application-specific
Neutralizations can apply to all analyses of a specific application.
In this case, the XML file should be located at:

[agent_home_dir]/conf/apps/[app_name]/libraries/
[technology]

System-wide
Neutralizations can apply to all analyses of all applications.
In this case, the XML file should be located at:

[agent_home_dir]/conf/libraries/[technology]

Exceptions to this rule are:
CPP engine reads from …/libraries/c
objective engine reads from …/libraries/objetivec and …/libraries/c

Any custom neutralization routine must be defined in a (XML custom neutralization file
format).

The name of the file is irrelevant but the location is quite important.

Legend

[local installation directory of Kiuwan Local Analyzer (KLA)agent_home_dir]:
[the root directory of application source code to be analyzed, as analysis_base_dir]:
specified by “-s” option of KLA CLI (Command Line Interface), or in “Folder to
analyze” input box when using KLA GUI (Graphical User Interface)
[name of the app to be analyzed, as specified by “-n” option of KLA CLI app_name]:
(Command Line Interface), or in “Application name” input box when using KLA GUI
(Graphical User Interface)
[] : name of the Kiuwan technology, as specified in [agent_home_dir]/conftechnology
/LanguageInfo.properties

Be careful

Never save custom libraries files or edit existing files in folder [agent_home_dir]
, because this folder is going to be removed when the engine is /libraries/{tech}

updated.

As a general recommendation, we suggest naming the XML file as [technology]_custom_neutralizations.
 (this will help to identify your custom files from Kiuwan's own files).xml

Therefore, the next sections will use as the name for our custom file.java_custom_neutralizations.xml

Creating a custom “Library” of neutralization routines

You don’t need to create an XML file for every single neutralization routine.

Instead, you will include all of them in a single file identified as a library of custom neutralization routines,
with a name for it.

Library identification will be an XML element such as:

<library name="java.custom.libraries"/>

As a suggestion, we recommend using something like: [technology].custom.library

Please refer to the for editing custom libraries of neutralization routines.schema file

As said above, a Neutralization Routine is a piece of code that assures that any tainted data got as input
produces untainted data as output.

That piece of code is typically a function or a class method (depending on whether your technology is
object-oriented or not).

To declare the routine, you must include the element. The schema file describes the allowed set of
.elements that form part of the library

For our purposes, commonly used elements are either or , depending on the language. class function

Once, the routine is declared, it must be marked as a neutralization routine as follows. See the reference
section for more details on how to declare a routine.

Examples

Let’s see some explained examples of custom neutralizations:

Example 1 (Java)

In this example the method is a custom neutralization for a path from a source to a path traversal validate
sink. The input of method is neutralized and the output, (referred by argpos -1 in the validate
neutralization definition in the XML library), is untainted after the validation is executed.

The next source code shows an example of how to use the neutralization:

Then, what you must do in the XML file is to properly such routine and it as a declare mark
neutralization routine.

package com.mycompany.onepackage;

import com.mycompany.otherpackage.MyUtils;
import javax.servlet.http.HttpServletRequest ;
import java.io.FileInputStream;
public class MyClass {
 // ...
 public void methodThatAccessToFileSystem(HttpServletRequest req) {
 String inputFile = req.getParameter("file"); //inputFile tainted
 inputFile = MyUtils.validate(inputFile + ".tmp"); //inputFile
untainted after validation
 return new FileInputStream(SAFE_DIR.getAbsoluteFile() + inputFile);
 }
 // ...
}

=======================================

package com.mycompany.otherpackage;

import com.mycompany.IMyUtilsClass;

public class MyUtils implements IMyUtilsClass {
 //
 public String validate(String value) {
 // ...
 // perform string value validation/Canonicalization/Normalization
/Sanitization
 // ...
 return value; // once cleaned up
 }
}

And this is how you should declare the neutralization method in the library XML file:

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.optimyth.com/schema/definitions
/library_metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 name="java.custom.libraries" standard="custom" technology="java">
 <class name="com.mycompany.otherpackage.MyUtils" kind="class"
supertypes="com.mycompany.IMyUtilsClass">
 <method name="validate" signature="validate(java.lang.String)" match="
name">
 <return type="java.lang.String"/>
 <neutralization argpos="-1" kind="path_traversal" resource="web" />
 </method>
 </class>
</library>

Example 2 (Java)

In the next example the neutralization only affects to filesystem resources:

Do not forget

types have to be fully qualified
specify return type if the method has one
no need to declare parameters names in the method signature, just the fully qualified
types

Neutralization , and arguments will be discussed later...argpos kind resource

package com.mycompany.onepackage;

import com.mycompany.otherpackage.CustomFile;
import javax.servlet.http.HttpServletRequest;
import java.io.FileInputStream;
public class MyClass {
 // ...
 public void methodThatAccessToFileSystem(HttpServletRequest req) {
 String inputFile = req.getParameter("file"); //inputFile tainted
 CustomFile file = new CustomFile(inputFile);
 file.sanitize(); //file untainted after sanitization
 return new FileInputStream(SAFE_DIR.getAbsoluteFile() + file);
 }
}

=====================================

package com.mycompany.otherpackage;

import java.io.File;

public class CustomFile extends File {
 //..
 public void sanitize() {
 // perform file sanitization
 }
}

Neutralization declaration in the library XML file:

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.optimyth.com/schema/definitions
/library_metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 name="java.custom.libraries" standard="custom" technology="java">
 <class name="com.mycompany.otherpackage.CustomFile" kind="class"
supertypes="java.io.File">
 <method name="sanitize" signature="sanitize()">
 <neutralization argpos="-2" kind="string" resource="filesystem"/>
 </method>
 </class>
</library>

Example 3 (Java)

In this example, a java annotation is used as neutralization.

package com.mycompany.onepackage;

import java.sql.ResultSet;
import java.sql.Statement;
import java.sql.Connection;

public class Main {

 private Connection con;

 public static void main(String[] args) {
 String name = args[0];
 Item item = new Item(name);
 process(item);
 }
 public static void process(Item item) {
 try {
 ResultSet rs = null;
 Statement stmt = con.createStatement();
 String input = item.getName();
 rs=stmt.executeQuery("select * from items where
item_name="+ input); // input is tainted
 } catch (...) {
 // ...
 }
 }
}

=====================================

package com.mycompany.onepackage;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target({ElementType.FIELD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface MyAnnotation {
 // perform neutralization
}

=====================================

package com.mycompany.onepackage;

public class Item {
 String name;

 public Item(String name) {
 super();
 this.name = name;
 }

 @MyAnnotation()
 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

So, you should declare the annotation as neutralization in the library XML file as:

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.optimyth.com/schema/definitions
/library_metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 name="java.custom.libraries" standard="custom" technology="java">
 <annotation name="com.mycompany.onepackage.MyAnnotation">
 <neutralization kind="sql_injection" />
 </annotation>
</library>

Neutralization elements

A identifies an element (essentially a method call) as a vulnerability neutralizer, it is neutralization
defined in Kiuwan by the following element:

<!ELEMENT neutralization (#PCDATA)*>
<!ATTLIST neutralization
 argpos CDATA #REQUIRED
 kind CDATA #IMPLIED
 resource %resource; #IMPLIED
>

argpos

the ndicate argpos attribute specifies what object (or objects) are by the routine. It iuntainted
s which element is being neutralized by this neutralization. Depending on how your custom
neutralization routine works, you should code a different value in this argument. Allowed
values are:

Allowed values Neutralization in XML

0..n: A non-negative value
indicates that the argument
at the given index (starting
at 0)is being neutralized.

obj.call
(arg1, arg2)

arg1 is
neutralized
when argpos
="0"
arg2 is
neutralized
when argpos
="1"
Both are
neutralized
when argpos
="0,1"

<method name="call" signature="call(fqcn.Arg1Type,
fqcn.Arg2Type)">
 <neutralization argpos="0" kind="..."
resource="..." />
</method>

-1: Target object (returned
value) is being neutralized.

value = obj.
call(arg1)

value is
neutralized
when argpos
="-1"

<method name="call" signature="call(fqcn.Arg1Type)"
>
 <return type="fqcn.ValueType"/>
 <neutralization argpos="-1" kind="..."
resource="..." />
</method>

1.
2.
3.

-2: Called object is being
neutralized.

 obj.call()
obj is
neutralized
when argpos
="-2"

<method name="call" signature="call()">
 <neutralization argpos="-2" kind="..."
resource="..." />
</method>

Neutralization routines could be defined in the same class
where they are used, or in a different one, where you can
invoke them through an object instantiation call or by a
static call. Any combination of this and the argpos
attribute values is possible.

kind

A neutralization routine is usually applied to a specific vulnerability type (or). The kind kind a
ttribute indicates the type of vulnerability affected by this neutralization, like , XSS sql_injecti

, , etc. Use for general purpose neutralizations.on open_redirect string

You can include as many neutralization elements as vulnerability types your routine
neutralizes. To see the exact attribute value, locate the vulnerability you need to neutralize,
open the sink data and see the value.Category

<neutralization argpos="-1" kind="sql_injection"/>

<neutralization argpos="-1" kind="xss"/>

If you want it, the neutralization applies to ALL the vulnerabilities (i.e. it’s not specific to any
vulnerability): set as the value for the attributestring kind

resource

A neutralization routine can also be specifically suited to a particular type. resource

For example, your neutralization routine could be applied to database or filesystem
resource types.

Valid values of can be one of (resource memory |os |configuration
|environment |filesystem |formatstr |database |web |network |gui

).|crypto |other

As above, check the Sink Data to set the appropriate value. That’s the value you must
indicate in a attribute.kind

 Reference
Any must be an XML file with the following structure:Custom Neutralization File (CNF)

Reference to schema file
Definition of the custom Library of Neutralization routines
List of custom Neutralization routines

The schema file that may be used while editing custom neutralization libraries can be found in[agent_ho
me_dir]/lib.engine/analyzer.jar/resources/library_metadata.xsd file.

Be careful

For reference purposes only, you can check KiuwanLocalAnalyzer predefined library
definitions in [agent_home_dir]/libraries/{tech}

Never save custom libraries files or edit existing files in [agent_home_dir]/libraries/
, because this folder is going to be removed when the engine is updated.{tech}

	Custom Neutralizations

